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ABSTRACT

In this paper we present an algorithm for robust speech
enhancement based on an Optimal Modified Minimum
Mean-Square Error Log-Spectral Amplitude (OM-LSA)
estimator for multiple interferences. In the original OM-
LSA one interference was taken into account. However,
there are many situations where multiple interferences are
present. Since the human ear is more sensitive to a small
amount of residual non-stationary interference than to a
stationary interference we would like to reduce the non-
stationary interference signal down to the residual noise
level of the stationary interference. Possible applications
for the proposed algorithm are joint speech dereverbera-
tion and noise reduction, and joint residual echo suppres-
sion and noise reduction. Additionally, we present two
possible methods to estimate thea priori Signal to Noise
Ratio of each of the interferences.

1. INTRODUCTION

Spectral enhancement has received a lot of attention in the
last three decades, especially for single channel noise re-
duction. Recently, researchers have started to use these
techniques for residual echo suppression [1,2] and speech
dereverberation [3]. In practical systems one may en-
counter more than one interference simultaneously.
In [2] Gustafsson et al. proposed two postfilters for resid-
ual echo and noise reduction. The first postfilter is based
on the Log Spectral Amplitude estimator [4] and was ex-
tended to attenuate multiple interferences, the second post-
filter was psychoacoustically motivated.
In this paper we present an Optimal Modified Minimum
Mean-Square Error Log-Spectral Amplitude (OM-LSA)
estimator for multiple interferences. The OM-LSA spec-
tral gain function, which minimizes the mean-square er-
ror of the log-spectra, is obtained as a weighted geometric
mean of the hypothetical gains associated with the speech
presence uncertainty. In the original OM-LSA, proposed
by Cohen [5], one interference was taken into account.
There are many applications in which we are dealing with
one non-stationary and one stationary interference. Since
the human ear is more sensitive to a small amount of re-

sidual non-stationary interference than to a stationary in-
terference we would like to reduce the non-stationary in-
terference signal down to the residual noise level of the
stationary interference, such that the final residual non-
stationary interference will be masked by the residual sta-
tionary interference. Possible applications for the pro-
posed algorithm are joint speech dereverberation and noise
reduction, and joint residual echo suppression and noise
reduction. The OM-LSA spectral gain function is a func-
tion of thea priori anda posterioriSignal to Noise Ratios
(SNRs). In this paper we additionally present two pos-
sible methods to estimate thea priori SNR of each of the
interferences.
The outline of this paper is as follows. The problem state-
ment can be found in Section2. A brief review of the
OM-LSA and a modification of the spectral gain function
is presented in Section3. In Section4 we will present
two methods to estimate thea priori SNR for each of the
interferences. Experimental results and conclusions are
presented, respectively, in Section5 and6.

2. PROBLEM STATEMENT

Let x(n), r(n) andd(n) denote speech and two uncorrel-
ated additive interference signals, respectively,

y(n) = x(n) + r(n) + d(n).

It should be noted that in caser(n) and d(n) are stat-
istically independent Gaussian random variables they can
be considered as one interference. The variance of the
total interference is then equal to the sum of the separate
variances. However, in caser(n) andd(n) are, for ex-
ample, a non-stationary and a stationary interference, and
the (maximum) amount of desirable reduction is different,
their separation is preferred. The OM-LSA spectral gain
function, which depends on both time and frequency, is a
function of thea priori anda posterioriSignal to Noise
Ratios, which are denoted byξ(k, l) andγ(k, l), respect-
ively. In this paper time frames are denoted by the indexl,
and frequency bins are denoted by the indexk. We show
that one can gain control of the noise reduction level for
each interference by associating a separatea priori SNR
with each interference.
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The estimated Short-Time Fourier Transform (STFT) of
the clean speech,̂X(k, l), is obtained by applying the spec-
tral gain function,GOM-LSA, to each noisy spectral com-
ponent:

X̂(k, l) = GOM-LSA(k, l)Y (k, l).

The estimated clean speech signal can be obtained using
the inverse STFT and a weighted overlap-add method.
In the sequel we assume that an estimate of the Power
Spectral Density (PSD) of each interference is available
at all times. In many applications, such as speech dere-
verberation or residual echo suppression, it is reasonable
to assume that the PSD of the non-stationary interference
can be estimated (c.f. [1, 2, 3]). The PSD of the station-
ary interference can be estimated, for example, using the
Improved Minima Controlled Recursive Averaging (IM-
CRA) method proposed by Cohen.

3. OM-LSA ESTIMATOR

The Log Spectral Amplitude (LSA) estimator from Eph-
raim and Malah [4] minimizes

E

{(
log(A(k, l))− log(Â(k, l)

)2
}
,

whereA(k, l) = |X(k, l)| denotes the spectral speech
amplitude, andÂ(k, l) its optimal estimator. Assuming
statistical independent spectral components, the LSA es-
timator is defined as

Â(k, l) = exp (E{log(A(k, l))|Y (k, l)}) .
The LSA gain function is given by

GLSA(k, l) =
ξ(k, l)

1 + ξ(k, l)
exp

(
1
2

∫ ∞

ν(k,l)

e−t

t
dt

)
,

where

ν(k, l) =
ξ(k, l)

1 + ξ(k, l)
γ(k, l),

1
ξ(k, l)

=
1

ξr(k, l)
+

1
ξd(k, l)

, (1)

ξr(k, l) =
λx(k, l)
λr(k, l)

, ξd(k, l) =
λx(k, l)
λd(k, l)

,

γ(k, l) =
|Y (k, l)|2

λr(k, l) + λd(k, l)
,

λx(k, l) = E{|X(k, l)|2},

λd(k, l) = E{|D(k, l)|2}, andλr(k, l) = E{|R(k, l)|2}.

The OM-LSA spectral gain function, which minimizes
the mean-square error of the log-spectra, is obtained as
a weighted geometric mean of the hypothetical gains as-
sociated with the speech presence uncertainty [5]. Given
two hypotheses,H0(k, l) andH1(k, l), which indicate, re-
spectively, speech absence and presence, we have

H0(k, l) : Y (k, l) = R(k, l) +D(k, l),
H1(k, l) : Y (k, l) = X(k, l) +R(k, l) +D(k, l).

Based on a Gaussian statistical model, the speech pres-
ence probability is given by

p(k, l) =
{

1 +
q(k, l)

1− q(k, l)
(1 + ξ(k, l)) exp (−ν(k, l))

}−1

,

whereq(k, l) is thea priori signal absence probability [5].
The OM-LSA gain function is given by,
GOM-LSA(k, l) = {GH1(k, l)}p(k,l) {GH0(k, l)}1−p(k,l),

with GH1(k, l) = GLSA(k, l) andGH0(k, l) = Gmin. The
lower-bound constraint for the gain when the signal is
absent is denoted byGmin, and specifies the maximum
amount of noise reduction in noise only frames.
In our case the lower-bound constraint does not result in
the desired result becauser(n) can still be clearly aud-
ible. To alleviate this problem we propose the following
modification ofGH0 . Our goal is to suppress the non-
stationary interference down to the noise floor, given by
Gmin D(k, l). We applyGH0(k, l) to those time-frequency
frames where the desired signal is assumed to be absent,
i.e. hypothesis H0(k, l) is assumed to be true, such that

X̂(k, l) = GH0(k, l) (R(k, l) +D(k, l)) .
The desired solution for̂X(k, l) is

X̂(k, l) = Gmin(k, l) D(k, l).
Assuming that the interferences are uncorrelated, minim-
izing

E
{
|GH0(k, l) (R(k, l) +D(k, l))−Gmin(k, l) D(k, l)|2

}
results in the desired solution forGH0(k, l),

GH0(k, l) = Gmin
λ̂d(k, l)

λ̂d(k, l) + λ̂r(k, l)
, (2)

whereλ̂d andλ̂r are estimates of, respectively,λd andλr.
The a posteriori SNRs can directly be estimated given
the noisy observation and an estimate of the Power Spec-
tral Density of each interference. The estimation of thea
priori SNR is slightly more complicated and will be dis-
cussed in the next section.

4. A PRIORI SNR ESTIMATOR
FOR MULTIPLE INTERFERENCES

Many researchers believe that the main advantage of the
LSA estimator is related to the Decision Directed approach,
proposed by Ephraim and Malah [4]. In this section we
show how the Decision Directed approach can be used
for estimatingξr(k, l) and ξd(k, l). We also present a
non-causal recursive estimation procedure for thea priori
SNRs using the same reasoning as in [6].
The totala priori SNR can be calculated using (1). How-
ever, in caser(n) andx(n) are close to zero this equation
may not be properly defined. To alleviate this problem we
propose to calculateξ(k, l) as follows

ξ(k, l) =


ξd 10 log10

(
λd(k,l)
λr(k,l)

)
> βdB,

ξd(k, l)ξr(k, l)
ξd(k, l) + ξr(k, l)

otherwise,

(3)
where the thresholdβdB specifies the level difference between
λd(k, l) andλr(k, l) in dB.
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4.1. Decision Directed

The Decision-Directed based estimator is given by

ξ̂DD(k, l) = max
{
µ Â(k,l−1)

λ(k,l−1) + (1− µ)ψ(k, l), ξmin

}
,

whereψ(k, l) = γ(k, l) − 1 is the instantaneousSNR,
λ(k, l) = λr(k, l) + λd(k, l), andξmin is a lower-bound
constraint on thea priori SNR. The weighting factorµ (0 ≤
µ ≤ 1) controls the tradeoff between the amount of noise
reduction and distortion (e.g. musical tones). To estimate
ξv(k, l), wherev ∈ {r, d}, we propose to use the follow-
ing expression

ξ̂DD
v (k, l) = max

{
µ Â(k,l−1)

λv(k,l−1) + (1− µ)ψv(k, l), ξmin,v

}
,

where

ψv(k, l) =
λ(k, l)
λv(k, l)

ψ(k, l),

=
λr(k, l) + λd(k, l)

λv(k, l)
(γ(k, l)− 1),

=
|Y (k, l)|2 − λr(k, l)− λd(k, l)

λv(k, l)
.

4.2. Non-Casual Decision Directed

In this section we propose a non-causal conditional estim-
ator

ξv(k, l|l + L) ,
λx(k, l|l + L)
λv(k, l)

,

wherev ∈ {r, d} andλx(k, l|l+L) , E{A2(k, l)|Y (k, [0,
. . . , l+L])}, for thea priori SNRs given the noisy meas-
urements up to framel + L. The non-causal estimator
combines two steps, a “propagation” step and an “update”
step, following the rationale of Kalman filtering, to recurs-
ively predict and update the estimate forλx(k, l) as new
data arrives. The non-causal estimator also employs fu-
ture spectral measurements in the process to better predict
the spectral variance of the clean speech.
Let λ′x(k, l|l + L) , E{A2(k, l)|Y (k, [0, . . . , l − 1, l +
1, . . . , l+L])} denote the conditional spectral variance of
X(k, l) given the noisy measurements up to framel + L
excluding the noisy measurement at framel. Letλx(k, l|[l+
1, . . . , l+L]) , E{A2(k, l)|Y (k, [l+ 1, . . . , l+L])} de-
note the conditional spectral variance ofX(k, l) given the
subsequent noisy measurementsY (k, [l + 1, . . . , l + L]).

The estimate forλx(k, l) givenλ′x(k, l|l+L) andY (k, l)
can be updated by (4), where

ξ̂′(k, l|l + L) ,
λ̂′x(k, l|l + L)
λ(k, l − 1)

is thea priori SNR given the noisy speech components up
to framel + L, excluding framel [6].
The “backward estimation” and “backward-forward propaga-
tion” are exactly the same as in [6] and are presented here
for completeness. The “backward estimation” is given by
ξ̂(k, l|[l + 1, . . . , l + L])

=

{
1
L

∑L
n=1 γ(k, l + n)− β if non-negative,

0 otherwise,

whereβ (β ≥ 1) is the over-subtraction factor. The
“backward-forward propagation” is calculated using (5),
whereα (0 ≤ α ≤ 1) is related to the stationarity of the
random processλx, α′ (0 ≤ α′ ≤ 1) is associated with
the reliability of the estimateξ(k, l|[l + 1, l + L]), and
ξ̂(k, l − 1|l + L− 1) is calculated similar toξ(k, l) in (3)
usingξ̂d(k, l − 1|l + L− 1) andξ̂r(k, l − 1|l + L− 1).
Dividing both sides in (4) byλv(k, l), and applying a lower-
bound constraintξmin,v, results in the “update” step of
ξ̂v(k, l|l + L) as denoted in (6).

5. RESULTS

We compared the segmental SNR and Log Spectral Dis-
tance (LSD) of the original OM-LSA, usingλ = λr +
λd, and the proposed algorithm using the modified gain
function. The segmental SNR is defined as the average
local SNR over the set of frames where the desired signal
is active. The desired signal consists of a speech signal
sampled at 8 kHz. We used random white Gaussian noise
as a stationary interference (segmental SNR=12 dB), and
a second speech fragment as a non-stationary interference.
Thea priori SNRs were calculated using the Decision Dir-
ected (DD) approach and the non-causal (NC) estimator.
All parameters were chosen equal to those used in [6]. The
lower-bound forξdB

min,r = −40 dB andξdB
min = ξdB

min,d =
−18 dB, andβdB was set to 3 dB. In this experiment we
used the exact power spectra of both interferences, due to
this we can exclude the influence of the estimation ofλr

λ̂x(k, l|l + L) = E
{
A2(k, l)|λ′x(k, l|l + L), Y (k, l)

}
=

ξ̂′(k, l|l + L)

1 + ξ̂′(k, l|l + L)

(
1

γ(k, l)
+

ξ̂′(k, l|l + L)

1 + ξ̂′(k, l|l + L)

)
|Y (k, l)|2

(4)

ξ̂′(k, l|l + L) = α
Â2(k, l − 1)
λ(k, l − 1)

+ (1− α)
[
α′ξ̂(k, l − 1|l + L− 1) + (1− α′)ξ̂(k, l|[l + 1, . . . , l + L])

]
(5)

ξ̂v(k, l|l + L) = max

{
ξ̂′(k, l|l + L)

1 + ξ̂′(k, l|l + L)

(
1

γ(k, l)
+

ξ̂′(k, l|l + L)

1 + ξ̂′(k, l|l + L)

)
|Y (k, l)|2

λv(k, l)
, ξmin,v

}
(6)
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Figure 1: Spectrograms of the desired signalx(n), the non-stationary interferencer(n), the microphone signaly(n), and
the original and modified OM-LSA using the non-causala priori SNR estimator.

andλd. The segmental SNR and LSD results are shown
in Table1. In all cases we can see that the non-causal es-
timator leads to a larger segmental SNR and smaller LSD.
The LSD of the proposed algorithms has decreased sig-
nificantly compared to the original OM-LSA. The spec-
trograms of desired signalx(n), the non-stationary inter-
ferencer(n), the microphone signaly(n), and the original
and modified OM-LSA using the non-causala priori SNR
estimator, are depicted in Figure1. From these results we
can clearly see that the non-stationary interference was de-
creased significantly compared to the original OM-LSA.

Method Segmental SNR (dB) LSD (dB)
Unprocessed 8.594 2.637
OM-LSA, DD 14.184 0.994
OM-LSA, NC 14.306 0.975
Proposed, DD 14.212 0.733
Proposed, NC 14.429 0.709

Table 1: Segmental SNR and Log Spectral Distance
(LSD) results for the OM-LSA and proposed methods.

6. CONCLUSIONS

We have developed an Optimally-Modified Log Spectral
Amplitude estimator for multiple interferences. The es-
timator involves separate a priori SNR estimation of each
of the interferences, by using the decision-directed ap-
proach, or a recursive non-causal estimator. In some ap-
plications (e.g., dereverberation and residual echo sup-
pression) the spectra of both the stationary and non-statio-
nary interferences can be reliably estimated. In such cases,
the proposed approach outperforms existing methods, and
enables better control of the level of residual non-stationary
noise. Experimental results demonstrated that the non-
stationary interference can be effectively suppressed down
to the residual noise level of the stationary interference.
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