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ABSTRACT

Broadband adaptive beamformers, which use a narrowband SNR-
maximization optimization criterion for noise reduction,typi-
cally cause distortions of the desired speech signal at the beam-
former output. In this paper two methods are investigated tocon-
trol the speech distortion by comparing the eigenvector beam-
former with a maximum likelihood beamformer: One is an ana-
lytic solution for the ideal case of absence of reverberation and
the other one is a statistically motivated approach. We use the re-
cently introduced gradient-ascent algorithm for adaptiveprinci-
pal eigenvector beamforming and then normalize the filter coef-
ficients by the proposed distortion control methods. Experimen-
tal results in terms of the achievable SNR gain and a perceptual
speech quality measure are given for the normalized eigenvector
beamformer and are compared to standard beamforming meth-
ods.

1. INTRODUCTION

Hands-free speech communication is often impaired by acousti-
cal background noise of a reverberant enclosure. Whereas single-
channel techniques can only utilize spectral information,multi-
channel speech enhancement by acoustical beamforming exploits
the spectral and spatial diversity to discriminate betweendesired
and undesired signal components. Statistically optimum beam-
formers like minimum mean square error (MMSE) beamform-
ers, minimum variance distortionless response (MVDR) beam-
formers or eigenbeamformers are well-known to result in the
same weight vector up to a scalar constant [1], which can be real-
ized as a single-channel post-filter. Especially, if the frequency-
domain narrowband eigenbeamformer method is applied to broad-
band speech signals, the resulting filter coefficients correspond
to the optimal (in the MVDR sense) filter coefficients up to an
unknown scalar per frequency bin. Generally, spatial constraints
are designed to assure a distortionless response for the desired
signal. Therefore it is necessary to estimate the speaker position
or at least the direction-of-arrival (DOA), which is a difficult task
on its own right in reverberant environments [2].
An adaptive linearly constraint solution of the MVDR beam-
former was originally given by Frost [3] and transformed by
Griffith and Jim into an unconstrained efficient realizationas
generalized sidelobe canceller (GSC) [4]. Here the underly-
ing assumption is that delay-only propagation paths are present
between the distant source and the sensors. The reverberation
found in practice can then lead to severe signal cancellation. The
signal cancellation problem has been addressed in many ways,
see [5] for a recent overview. Further, a major limitation ofthe
GSC is the relatively small signal-to-noise ratio improvement in

diffuse noise [6]. Unlike the GSC, a data-independent design
of the MVDR beamformer for theoretically well-defined sound
fields can be done. A study of the practically very relevant case
of diffuse backround noise is given in [7]. Because of the ability
of the MVDR beamformer to suppress a diffuse noise field it is
also known as superdirective beamformer.
Recently we have proposed a Filter-and-Sum beamformer [8]
which extracts adaptively the principal eigenvector incorporating
the cross power spectral density matrices of speech-plus-noise
signal and the noise-only signal at the microphones. The adapta-
tion works blindly, i.e. no explicit source localization isrequired
and the exact microphone positions need not be known. In [9] we
have shown that in addition to the direct path, also early reflec-
tions are aligned. Furthermore, significant signal-to-noise ratio
improvements have been achieved even for diffuse noise envi-
ronments [8, 10].
In this paper we address in particular the problem of speech dis-
tortion at the output of the frequency-domain principal general-
ized eigenvector beamformer (GEV). Different solutions tothe
problem will be discussed and verified by SNR and objective
speech quality measures in the presence of a directional noise
field.

2. STATISTICALLY OPTIMUM BEAMFORMER

We are given an array ofM microphones. Each frequency-
domain microphone signalXi(k), i = 1, . . . , M , wherek de-
notes the frequency bin, is assumed to consist of two compo-
nents: a signal componentSi(k) and a stationary noise term
Ni(k). The beamformer outputY (k) is then given by

Y (k) =

M
X

i=1

F ∗

i (k) · Xi(k) =

M
X

i=1

F ∗

i (k) · (Si(k) + Ni(k)).

(1)
Here,F ∗

i (k) is the complex conjugate filter coefficient of thei-
th microphone signal. The frame index has been omitted for ease
of notation. In the following we will use the vector notation, i.e.
X(k) = (X1(k), .., XM (k))T , F(k) = (F1(k), .., FM (k))T ,
such that (1) can be written as:

Y (k) = F
H(k) · X(k), (2)

where(·)T denotes transpose and(·)H Hermitian transpose. If
the desired signalSi(k) and the noiseNi(k) are uncorrelated
the power spectral density (PSD) of the beamformer output can
be written as

ΦY Y (k) = F
H(k)ΦXX(k)F(k) (3)

= F
H(k)ΦSS(k)F(k) + F

H(k)ΦNN(k)F(k),
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whereΦXX(k), ΦSS(k) andΦNN(k) are the cross power spec-
tral density matrices of the microphone signals, the speechand
noise terms, respectively. Our goal is to determine a vectorof
filter coefficientsF(k) such that the signal-to-noise ratio

SNR(k) =
F

H(k)ΦXX(k)F(k)

FH(k)ΦNN(k)F(k)
− 1 (4)

of the output signalY (k) is maximized. Obviously, the fre-
quency dependent SNR (4) is maximized by the eigenvector cor-
responding to the largest eigenvalue ofΦ

−1

NN
(k)ΦXX(k). Then

the Rayleigh quotient in (4) takes the magnitude of exactly the
largest eigenvalue.
Let ΦUU (k) denote the PSD of the source speech signalU(k)
and letHi(k) be the transfer function from the source to the
i-th sensor. TheM transfer functions are arranged in a vector
H(k) = (H1(k), . . . , HM (k))T . Then the power spectral den-
sity matrix of the sensor signals is given by

ΦXX(k) = ΦUU (k)H(k)HH(k) + ΦNN(k). (5)

We find, that
FSNR(k) = Φ

−1
NN

(k)H(k) (6)

is the principal eigenvector ofΦ−1
NN

(k)ΦXX(k), which maxi-
mizes the frequency dependent beamformer output SNR.
In an alternative design, if the target speaker directionθt is known
the array steering vector

d(θt, k) = (1, e−jωkτ2(θt), . . . , e−jωkτM (θt))T (7)

can be used as a spatial constraint to ensure a distortionless re-
sponse for signals arriving from the DOAθt: F

H
MV DRd(θt, k) =

1. Here,ωk is the discrete frequency variable andτi(θt) denotes
the delay of the target signal for thei-th sensor relative to the sig-
nal at the first sensor, which is a function of the DOAθt. With
the spatial constraint the so-called minimum variance distortion-
less response (MVDR) filter vector

FMVDR(k) =
Φ
−1
NN

(k)d(θt, k)

dH(θt, k)Φ−1
NN

(k)d(θt, k)
(8)

can be derived [3]. The MVDR beamformer ensures a distortion-
less response for signals arriving from the DOAθt and can be
shown to be optimum in the Maximum Likelihood sense. Note,
that for realistic applications not only a mismatch of the steer-
ing direction of the array but also of the sensor position andthe
sensor gain might cause strong distortions of the desired speech
signal at the beamformer output. Robustness to mismatched di-
rection estimates has to be included by widening the spatialse-
lectivity by derivative constraints and/or by diagonal loading of
the power spectral density matrices. Hence, the interference re-
jection will also be reduced.
Comparing (8) with (6) it is seen that, if we setH(k) = d(θt, k),
i.e. assume a transfer function from source to sensors governed
by pure delays, the two beamformers differ only in a scalar con-
stantw(k) per frequency bink:

FMVDR(k) = w(k)FSNR(k) (9)

which is actually a well-known fact [1].

3. FILTER NORMALIZATION

For a distortionless speech signal at the beamformer outputwe
have to find a post-filterw(k) which “normalizes” the filter co-
efficientsFSNR(k) such that the spatial response of the beam-
former r(θ, k) = |w(k)FH

SNR(k)d(θ, k)| will have unity gain

for any frequency indexk in the target directionθt: r(θt, k)
!
= 1.

We will now derive three alternatives how to determinew(k) and
verify the results for the case of no reverberation.

Spatial Normalization (SN) If we assume to know the speaker
direction a spatial constraint can be incorporated by normalizing
the filter coefficients in (6) by

wSN(k) =
1

FH
SNR(k)d(θt, k)

. (10)

In the case of no reverberation the resulting filter coefficients are

wSN(k)FSNR(k)

˛

˛

˛

˛

H(k)=d(θt,k)

=
Φ
−1
NN

(k)d(θt, k)

dH(θt, k)Φ−1
NN

(k)d(θt, k)
,

(11)
which is equal to the MVDR solution given in (8).

Blind Analytical Normalization (BAN) Since we are inter-
ested in a blind scheme we now assume that the DOA is no
longer known. We propose the following post-filter

wBAN(k) =
1

FH
SNR(k)ΦNN(k)FSNR(k)

. (12)

Using (6) andH(k) = d(θt, k) we obtain

wBAN(k)

˛

˛

˛

˛

H(k)=d(θt,k)

=
1

dH(θt, k)Φ−1
NN

(k)d(θt, k)
, (13)

which will give a distortionless response for the DOA with the
filter coefficientswBAN(k)FSNR(k). We call this methodblind
analytical normalization(BAN) since a closed form expression
can be given, in contrast to the method proposed next.

Blind Statistical Normalization (BSN) Here, we derive a sta-
tistically motivated normalization scheme, which will be shown
in the experimental results to have advantages in comparison to
wBAN(k), especially in a reverberant environment. While com-
plete knowledge of the DOA is not available, we might have
partial knowledge, which we express by a probability density
functionp(θ). Extending (10) to account for such partial knowl-
edge yields

wBSN(k) =
1

π/2
R

θ=−π/2

p(θ)|FH
SNR(k)d(θ, k)|dθ

. (14)

Note thatp(θ) depends on the frequency, which is not indicated
in our notation. Also,FSNR(k) depends on the DOA, which is
also not made explicit in our notation. It is easily seen thateq.
(14) reduces to (10), if the DOA is known, i.e.p(θ) = δ(θ−θt).
Indeed, some knowledge aboutθt is implicitly available in the
filter coefficients: a correctly operating beamformer will have
a small spatial response in the direction of the noise and a large
response in the direction of the desired signal. Therefore the spa-
tial response itself can be used as probability density function, if
properly normalized:

p(θ) =
|FH

SNR(k)d(θ, k)|
π/2
R

θ=−π/2

|FH
SNR(k)d(θ, k)|dθ

. (15)

With (14) and (15) the post-filter for theblind statistical normal-
ization(BSN) can be written as

wBSN(k) =

π/2
R

θ=−π/2

|FH
SNR(k)d(θ, k)|dθ

π/2
R

θ=−π/2

|FH
SNR(k)d(θ, k)|2dθ

. (16)
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4. ADAPTIVE EIGENVECTOR TRACKING

The determination of the dominant eigenvector of the gener-
alized eigenvalue problem is equivalent to the following con-
strained optimization problem

max
FH(k)

F
H(k)ΦXX(k)F(k) (17)

subj. toF
H(k)ΦNN(k)F(k) = C(k), (18)

whereC(k) ∈ IR+ is an arbitrary positive non-zero real con-
stant. In [8] we have derived an iterative gradient ascent algo-
rithm for solving this optimization problem. Omitting the fre-
quency bin indexk for ease of notation and introducing the iter-
ation counterκ, which is also the block index of the segmental
signal processing, the following gradient ascent algorithm has
been obtained:

Fκ+1 = Fκ +
C −F

H
κ Φ̂NNFκ

2FH
κ Φ̂NNΦ̂NNFκ

Φ̂NNFκ

+ µ

"

Φ̂XXFκ −
F

H
κ Φ̂

(XN)
Fκ

2FH
κ Φ̂NNΦ̂NNFκ

Φ̂NNFκ

#

,

(19)

whereΦ̂
(XN) = Φ̂XXΦ̂NN + Φ̂NNΦ̂XX, andµ is the step

size parameter. The estimated power spectral density matrices
are denoted witĥΦ respectively. We assume the noise to be sta-
tionary or, at least, to change its statistics on a much larger time
scale than the speech signal. Therefore the noise-PSD can be
estimated in speech pauses and be still considered a good esti-
mate during speech, whereas the PSD matrix of the reverberated
speech has to be estimated during speech periods.

5. EXPERIMENTAL RESULTS

In this section we experimentally evaluate the proposed normal-
ization algorithms of the eigenvector beamformer for speech en-
hancement in a reverberant enclosure of the size (6 m) x (5 m)
x (3 m) in the presence of one additive stationary noise source
(recording of computer fan-noise). 10 utterances from differ-
ent speakers (5 male and 5 female) were used as target speech
signals. The sensor signals of theM = 5-element linear micro-
phone array were obtained by convolution of speech and noise
with simulated room impulse responses for reverberation times
T60 of 0 s to 0.8 s. The distance between the microphones was
4 cm, and the sampling rate was 12 kHz. The speech source
was placed atθt = 45◦ relative to broadside at a distance of
0.8 m and the noise source atθn = −20◦ at a distance of 1.6
m. Speech and noise were mixed with a signal-to-noise ratio of
about 0 dB. The FIR filters had a length of 128 taps each, and
the DFT length was set to 256 taps. Diagonal loading was used
for regularization ofΦNN(k) and the integration in (16) was
replaced by a sum over 90 discrete angle values.

Filter Normalization First we study the spatial transfer func-
tion for the case of no reverberation, known power spectral den-
sity matrices and converged filter coefficients. The resulting
beampattern obtained by the MVDR beamformer, the eigenvec-
tor beamformer without normalization (GEV), with blind analyt-
ical normalization (GEVBAN) and blind statistical normaliza-
tion (GEV BSN) are shown in Fig. 1 for different frequencies.
It can be seen that a minimum has been put in the direction of
the noise and the direction of the main lobe depends on the fre-
quency. Only the MVDR beamformer gives a perfectly distor-
tionless response for the target directionθt = 45◦.

MVDR
Noise

−20o
  2

  1

Speech

45o

  20

  40

GEV
Noise

−20o Speech

45o

  1

  2−20o

45o

GEV_BSN

Speech

Noise

  1

  2

GEV_BAN
Noise

−20o Speech

45o

Figure 1:Beampattern of the MVDR beamformer and the eigen-
vector beamformer without normalization and with BAN/BSN.
Note the different scaling for GEV.

While the beampattern gives an impression of the spatial re-
sponse over all anglesθ = [−π/2, .., π/2], in Fig. 2 the spatial
responser(θt, k) = |FH(k)d(θt, k)| is plotted over the fre-
quency: in the upper figure for no reverberation,T60 = 0 s, and
in the lower figure forT60 = 0.3 s. It can be seen, that the spa-
tial response in the case of no normalization depends highlyon
the frequency and the reverberation. The BSN post-processing
gives good results for all frequencies and reverberation times.
The analytical normalization method BAN works well only for
low reverberation times.
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Figure 2:Spatial responser(θt, k) for the target direction over
continuous frequency.

In Fig. 3 we study the behavior during adaption. It shows the
spatial response forθt for the frequencies 1, 2, 3, 4 and 5 kHz
over time: in the upper figure for no reverberation,T60 = 0 s,
and in the lower figure forT60 = 0.3 s. While the GEVBAN
beamformer shows high fluctuations during acquisition timethe
GEV BSN beamformer exhibits no peaks in the spatial response
for all times.

Signal-to-Noise Ratio The SNR gain from the multi-channel
beamformer input to the beamformer output for the already in-
troduced beamformer methods (MVDR, GEV, GEVBAN,
GEV BSN) and a Delay-and-Sum beamformer (DSB) is shown
in Fig. 4 over the reverberation time. While a perfect time align-
ment of the DSB has been done, no compensation of possible
level differences of the input channels was made. In the fig-
ure the not normalized GEV beamformer gives the highest SNR
gain. This is due to the fact, that it boosts the frequencies with
high speech power and thus results in a better SNR compared to
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Figure 3: Spatial responser(θt, k) for the target direction for
the frequencies 1, 2, 3, 4 and 5 kHz over time.

the other methods. Not seen in Fig. 4 is the fact that the SNR
gain obtained by GEVBAN exhibits a strong fluctuation from
sentence to sentence for largeT60. This makes GEVBAN un-
suitable for higher reverberation times.
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Figure 4:Comparison of the SNR gain.

Perceptual Speech Quality Since the SNR gain does not re-
flect speech distortions, the different beamforming methods are
finally compared by the perceptual similarity measure PSM [11]
in Fig. 5. PSM has been shown to give comparable objective per-
ceptual quality evaluation results as the well-known PESQ mea-
sure [12]. The MVDR beamformer gives for low reverberation
times the highest PSM values, although the SNR gain is smaller
than for the GEV methods, where the better SNR is bought at
the expense of additional speech distortion. With increasing re-
verberation time the speech distortion decreases and remaining
little amplification of some spectral components of the speech
results for the GEV beamformer with and without normalization
in a better perceptual quality compared to the MVDR.

6. CONCLUSIONS

In this paper we extended the recently proposed generalized
eigenvector beamformer by single-channel normalization post-
processing to control the speech distortions. Two different ap-
proaches have been realized: one analytic solution for the ideal
case of no reverberation and one statistically motivated method.
While the GEV beamformer alone gives the highest SNR im-
provement, also some speech distortion is incorporated. Scaling
of the filter coefficients by the proposed normalization methods
results in reduction of speech distortion, shown by the perceptual
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Figure 5:Comparison of the perceptual similarity measure.

similarity measure PSM. The advantage of the GEV beamformer
is blind adaption, i.e. no explicit estimation of the direction of
the desired source and no calibration is needed. Further, the pro-
posed normalization schemes can be used for any adaptive gen-
eralized principal eigenvector tracking algorithm, not only the
specific method used here.
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