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ABSTRACT

In this paper we propose a combined approach using beamform-
ing and frequency domain ICA for the source separation prob-
lem in reverberant environments. The proposed method gains,
and makes use of, the location of (any one) target source for
permutation resolution. This approach is computationally less
intensive and yields results comparable to current, state-of-the-
art approaches. Additionally, we propose and justify the use of a
non-linear post-processor to further improve crosstalk suppres-
sion in the recovered signals.

1. INTRODUCTION

Linear independent component analysis (ICA) has proven itself
as a statistical tool for the blind demixing of (primarily) instan-
taneous mixtures of statistically independent random variables.
The advantage of ICA lies in the fact that, given nothing more
than the observations of the mixtures, it is nevertheless possible
to obtain the underlying independent components, even obtain-
ing an estimate of the mixing system in the process. However,
the price to pay for this absence ofa priori knowledge is the
ambiguity associated with scaling and permutation. While these
are less critical for time-domain separation algorithms, the reso-
lution of these ambiguities are fundamental for proper recovery
when using frequency domain approaches on broadband signals,
where source separation is performed independently in each fre-
quency bin.
ICA approaches utilizing beamformers in some way or another
have been proposed before [1, 2, 3, 4]. In [1], the ‘beam-pattern’
of the demixing matrix is used to generate direction of arrival
(DOA) information, subsequently used for permutation resolu-
tion; in [2], the demixing matrices select, for each frequency bin,
the best option from a null-beam solution and an ICA solution,
depending upon a quality criterion that is based upon the coher-
ence function; [3] uses an anechoic approximation to the mixing
model and forms a cumulant based cost function for optimizing
the null-beamformers for the considered model, whereas [4] ar-
gues that proper initialization of the demixing matrices – using
geometric constraints based on beamformers – obviates the need
for permutation correction in the proposed frequency-domain,
second-order statistics (SOS) algorithm. The DOA-based ap-
proach of [5] or the clustering approach of [6] for permutation
solution are similar to the beam-pattern approach of [1] in that
each cluster in the pattern is allocated to a source.
All the approaches above, however, do not utilize the beam-
formed signals themselves, and while a proper initialization of

the demixing matrices as in [4] decreases the reconstruction er-
ror, the problem is not completely solved. The approach pro-
posed in this paper makes use of thenull anddirect pathchar-
acteristics of beamformers to generatereference sourcesfor per-
mutation resolution. This approach is computationally less ex-
pensive as compared to the method proposed in [7], while, at
the same time, yielding comparable results. Another advantage
of the proposed approach is that it is tolerant to position estima-
tion errors and, further, the position of only one source need be
estimated (for a2× 2 system).
The paper is organized as follows: first, the system model is
introduced along with the ICA approach. The permutation in-
consistency, inherent to ICA, is then briefly discussed. This is
followed by an overview of our proposed approach. Finally, the
results obtained using the proposed approach are compared with
those using the approach of [7]. Additionally, a rather simple
post-processor, based on binary masks, is introduced, and its ap-
plication justified.

2. SYSTEM OVERVIEW

Consider a two-speaker, two-microphone setup in a room. When
the speakers talk simultaneously, the (discrete-time) received mix-
turexl(n) at the microphones can be modelled as:�

x1(n)
x2(n) � =

�
a11(n) a12(n)
a21(n) a22(n) � ∗ � s1(n)

s2(n) � , (1)

where thealm(n) represent the (discrete-time) room impulse re-
sponses (RIR) from sourcem to microphonel, and∗ represents
the convolution operator. As the mixing is not instantaneous,
the time domain formulation does not lead to a practical applica-
tion of the standardized ICA [8]. However, taking the short-time
discrete Fourier transform, we obtain the following approximate
representation ateachfrequency bink:�

X1(k)
X2(k) � =

�
A11(k) A12(k)
A21(k) A22(k) � � S1(k)

S2(k) � . (2)

Thus, the temporal, convolutive problem of (1) is now repre-
sented byN instantaneous mixtures, whereN is the length of
the Fourier transform. This transformation now allows us to ap-
ply ICA to each instantaneous mixture, a process that shall sub-
sequently be referred to as frequency domain ICA (FDICA) [9].
Thus, FDICA optimizes, for each bink, a demixing matrixW(k)
such that:

Y(k) = W(k)X(k) ≈

�
S1(k)
S2(k) � . (3)
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2.1. Caveats of FDICA

The solution presented in (3) is ideal. However, in the absence
of anya priori knowledge of the mixing system, ICA solutions
usually have the form:

Y(k) ≈ P(k)D(k)S(k), (4)

whereP(k) is a2 × 2 permutation matrix, andD(k) is a diag-
onal, scaling matrix.
Note thatP and D are, in general, different in different fre-
quency bins. We shall term a permutation and scaling aslo-
cal, if it is for a particular frequency bin, and asglobal, if it is
common to all bins. It is then obvious that source reconstruc-
tion from the spectral domain is only successful if the permuta-
tion and scaling matrices are global. In other words,P(ka) =
P(kb), andD(ka) = D(kb) ∀ a, b.
While the scaling problem is rather reliably solved by the mini-
mal distortion principle [10], permutation remains a rather formi-
dable issue, especially due to its combinatorial nature. Recent
literature contains various proposals to mitigate this problem us-
ing various properties of the speech signals, namely:

• inter-frequency amplitude envelope correlation (AmDeCor
approach of [11])

• direction of arrival information (DOA) (DOA based ap-
proach of [1, 2, 5])

A recent approach that iteratively applies the above methods was
proposed by [7]. Our experience was that while this approach
is, indeed, rather robust, it is also computationally very expen-
sive. In the following we propose our alternative which, instead
of an iterative combination, demonstrates a ‘one-step’ approach.
We shall assume that the azimuthal location of (at least one of)
the sources is known. This information may be gained by, e.g.,
SRP-PHAT [12], clustering [13], Generalized Cross Correlation
(GCC), or similar approaches.

3. THE COMBINED BEAMFORMING AND ICA
APPROACH

3.1. Preprocessing

As in most ICA approaches, the search space is considerably re-
duced when standard preprocessing such as whitening and cen-
tering are performed. Indeed, it can be proven that such pre-
processing constrains the search for the demixing matrix to a
space of orthogonal (rotation) matrices [8]. However, before this
is done, we introduce a spatial filtering of the signals.

3.1.1. Beamforming

Assume that, of the two sources, we know the approximate az-
imuthal locationθt of one source – the ‘target’ source1. Then,
the steering vector corresponding to thedirectpath from this po-
sition to the array would be:

κt = [1 exp(− ωkd cos(θt)/c)]T

where ωk represents thekth discrete frequency;d, the inter-
microphone distance andc, the speed of sound in air. Corre-
spondingly, we define two signals:

1the angle is measured with respect to the array axis

• the null-beam signal:

X̂0,t(k) = [1 − exp ( ωkd cos(θt)/c)]X(k)

• the direct-path signal:̂Xd,t(k) = κ
H
t X(k)

Note that, except in anechoic environments, both signals still
contain a mixture of the sources. However, the interferer would
be predominant inX̂0,t(k) (in the absence of grating lobes).
This null-beam signal generates our ‘reference-source’ for per-
mutation resolution, as will be shown in Section 3.3. Further,
since the subsequent processing is done separately for each fre-
quency bin, we shall drop the bin indexk in the following.

3.1.2. Whitening

The input to this preprocessing stage is the composite vector
X̂ = [X̂0,t X̂d,t]

T of the previous step. We use the standard PCA
to de-correlate elements of the vectorX̂ to obtain the whitened
vectorU:

U = R
−1/2
X

X̂. (5)

3.2. ICA

The vectorU from (5) is input to the ICA stage. Due to the pre-
processing, we now search for an orthogonal matrixV that de-
composes the vectorU into mutually independent components
Y = VU. Choosing the Kullback-Leibler distance as the cost
function measure, and using the polar co-ordinate non-linearity
of [14] to approximate the derivative of the probability density
functions, we arrive at the following fast update rule:

∆V = �I− E �ϕ(Y)YH��
V, (6)

V ← ∆V,

whereϕ(x) = tanh(|x|)e arg(x), andE {.} stands for the expec-
tation operator. We found this particular choice of cost function
and non-linearity to have the fastest convergence among the non-
linearities proposed in [8, 9]

3.3. Permutation resolution

The result of the whitening and ICA steps is a scaled and per-
muted estimate of the underlying source components:

Y ≈ PDS.

To resolve the permutation, we shall consistently assign the sig-
nal from the known location to channel 1 and the interferer to
channel 2. For this, we use the null-beam signal as the reference
signal. The required permutation is then such, that:

PΠ =

Π(i)

argmin cor�|(PΠ(i)Y)1|, |X̂0,t|
�

, (7)

where(PΠ(i)Y)1 is the first element of the permuted output
signal vector, corresponding to the permutationΠ(i). Thus (7)
seeks that permutation that gives theminimumcorrelation of the
amplitude envelopes of the null-beam signalX̂0,t and the first
channel of the aligned output signalYp. This consideration
arises from the fact that a null-beam should remove much of
the direct path energy from the signal,St, resulting in amplitude
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spectra that are least correlated with the corresponding recovered
versions (Figure 1). The correlation is a normalized value and is
defined for two variablesx andy as:

cor(x, y) =
E {xy} − µxµy

σxσy
, (8)

whereµ represents the mean, andσ, the standard deviation of
the variables.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time Frames

|X̂
0
,t
|

(a) Null beam on target

0 50 100 150 200
0

1

2

3

4

5

6

Time Frames

|Ŷ
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Figure 1: Amplitude envelopes at1.0 kHz. Note the similarity
between the envelopes of the interferer and the null beam.

The system schematic is presented in Figure 2. Once the permu-
tation has been resolved, the minimum distortion principle [10]
is used to solve the scaling. The time-domain signal can then be
reconstructed, yielding the separated sources.
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Figure 2: System Schematic. Illustrated for a particular fre-
quency bin

4. NONLINEAR POSTPROCESSING

Time-frequency masking algorithms (e.g., [13, 15]), based on
the disjoint nature of the supports of the short-time Fourier trans-
form of speech signals, may be used to mask interferers at each
time-frequency point. However, such masking requires some
information to correctly allocate the time-frequency points in
a mixture to any one source. One approach, using direction
of arrival clustering, has been described in [13]. However, the
disadvantage of this method is its rather poor performance in

reverberant environments, as multipath propagation smears the
time-frequency representations of the sources, invalidating the
disjointness assumption.
Separating signals using ICA deconvolves the signals, in addi-
tion to separating them. However, the separated signals still con-
tain crosstalk. This stems from the general inability of frequency
domain ICA approaches to ideally demix sources in reverberant
environments. But, at this stage, where the disjointness assump-
tion is fulfilled to a better extent, it is possible to use masking
approaches to further increase the interference suppression.
The simplest implementation of such a method would be, con-
sidering the time-frequency points(m, k) of the demixed, per-
mutation and scaling aligned, signal vectorYp(m, k) (wherem
represents the time-frame index, dropped for convenience in the
previous discussion):

Mi(m, k) = � 1 |Yp,i(m, k)| > |Yp,3−i(m, k)|
0 Otherwise

(9)

wherei ∈ {1, 2}. We term this stage as thenonlinear crosstalk
canceller(NCC).

5. EXPERIMENTAL SETUP AND RESULTS

The proposed algorithm, which we shall term Beamforming-
ICA (BFICA), was compared vis-à-vis the robust and precise
method (ICARP) of [7], and an ‘ideal’ method (ICAID), where
the permutation ambiguity is resolved using the amplitude en-
velopes of the original sources. The ICAID approach represents
the upper bound, in terms of performance, for the ICARP and
BFICA algorithms. To keep the comparison fair, the coreICA
algorithm of each approach is set to the one described in this
paper. For the proposed approach, and the robust and precise
method, the DOAs were given to the algorithms, and correspond
to the values from the setup.
The experiments were conducted on data measured in a reverber-
ant room (T60 = 0.5 s). The DFT size was taken as 1024 bins.
The frame shift was50%, and the sampling rate was8000 kHz.
Further, the data was tapered by a Hann window, before taking
the Fourier transform. The microphones were omni-directional,
and were placed1 m from the sources, with an inter-microphone
distance of3 cm. The sources were selected from the TIMIT

database and consisted of both male and female speakers. The
algorithms were run for different combinations of speakers, over
different azimuthal spacings (from30◦ to 120◦) between the
sources, and over different positions of thesepairs in the az-
imuthal plane. The results presented have been averaged over all
the experiments.
The two instrumental measurement criteria selected for evaluat-
ing the algorithms were the Signal to Interference Ratio (SIR)
improvement(SIRi) and the Signal to Distortion ratio (SDR).
SIRi is computed as the difference between the Signal to Inter-
ference Ratio (SIR)after separation and the average SIR before
separation (i.e., in the input signals). In each case the SIR and
the SDR are computed in the time domain as proposed in [16].
The results are as shown in Figure 3.
Both, the proposed algorithm (ICABF), and the reference ap-
proach (ICARP), perform comparably. The ideal approach (ICAID)
has the best performance (as expected), however, this approach
still has some cross-talk (confirmed by listening tests and by the
improvement in SIR due to post-processing). This is an indi-
cation of the degradation of ICA algorithms in reverberant and
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Figure 3: Experimental results in the SIR-SDR plane.

noisy environments. Results using the NCC stage, with binary
masks, clearly indicate not only the reduction in cross-talk (in-
crease in SIRi), but also the resultant degradation in the signal
(SDR reduces). This highlights the inevitable trade-off between
SIR and SDR – one cannot be improved without subsequently
degrading the other.

Another interesting aspect of the proposed approach is its rela-
tive tolerance to DOA estimation errors in the localization stage.
This was tested on the measured data, where the beamforming
was done with corrupted DOA values (obtained by adding ran-
dom Gaussian noise (of variance 5) to the actual DOA). The re-
sults (BFICA (Noisy)) clearly corroborate the tolerance of our
approach.

6. CONCLUSIONS

This paper has introduced a combined beamforming and fre-
quency domain ICA approach for source separation. The advan-
tage of this method lies in its lower computational cost (as com-
pared to current state-of-the-art approaches), its adroit utilization
of beamformed signals for permutation resolution, and its toler-
ance to azimuth estimation errors. The results show that this
approach is comparable to the state-of-the-art approaches. Fur-
ther, the proximity of the SIR/SDR values for these approaches
to the ideal approach show that, while there is still room for mi-
nor improvements in the area of ambiguity resolution, stronger
focus should be on the ICA algorithm itself. Further, a rather
simple post-processor using binary masks (NCC) was also pro-
posed. Experiments show that NCC can improve the interference
suppression by up to4 dB, in individual cases. However, like all
non-linear methods, this introduces an additional distortion in
the recovered signals. The use of ‘soft’ masks, based on rela-
tive signal energy in the time-frequency plane reduces distortion
and the signals sound more natural. This is an important aspect,
as informal listening tests indicate that people prefer undistorted
speech with more cross-talk, to distorted speech with less inter-
ference.
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