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ABSTRACT

In this contribution the Minimum Statistics noise power spectral
density estimator [1] is revised for the particular case of highly
correlated data which is observed for example when framewise
processing with considerable frame overlap is performed. For
this special case the noise power estimator tends to underesti-
mate the noise power. We identify the variance estimator in the
Minimum Statistics approach of being the origin of the observed
underestimation. The variance estimator controls the biascom-
pensation which is necessary to infer the mean power from a
minimum value. This estimator turns out to be biased when the
data is correlated. We provide an expression that describesthe
bias and show that by exploiting this the noise power estimation
can be improved.

1. INTRODUCTION

Many speech processing algorithms like single- or multi-
channel noise reduction, voice activity detectors, or ro-
bust speech recognition require knowledge of the power
spectral density of a disturbing background noise. Several
algorithms have been proposed for estimating the noise
power [2], [3], [1]. In [1] a noise power spectral den-
sity estimation based on optimal smoothing of the squared
magnitude of the noisy short-time Fourier transform coef-
ficients and Minimum Statistics has been proposed. The
method requires a bias compensation which has been
shown in [4] to be accurate for a variety of moderately
overlapping analysis windows. If, however, analysis win-
dows with considerable overlap are used an underestima-
tion of the noise power spectral density can be observed.
In speech enhancement applications a larger window over-
lap might be motivated by delay considerations. In a dou-
ble buffering block processing scheme the system latency
can be reduced by decreasing the frame shift which results
for a given spectral resolution in a larger frame overlap.
We show that the reason for the underestimation of the
noise power spectral density is a biased variance estimator
that controls the bias compensation which is used to com-
pute the noise power estimate. It turns out that the vari-
ance estimator underestimates the variance by a factor that
is proportional to the data correlation. Since spectral data
from consecutive and considerably overlapping windows
is correlated, noise power underestimation is observed in

this particular case.

In the sequel we start with the analysis of the expecta-
tion of an autoregressive variance estimator for the gen-
eral case of correlated data. In Section 3.1 we apply the
findings to the Minimum Statistics noise power spectral
density estimator and introduce in 3.2 an extension that
accounts for the effects which are observed if the data is
highly correlated, e.g. due to considerably overlapping
analysis windows. In Section 4 we present experimen-
tal results in terms of instrumental measures. Finally, we
summarize the work in Section 5.

2. VARIANCE ESTIMATION

A short-term estimate for the varianceσ2
x

of a possibly
correlated random variablex at time instanti can be de-
fined as

σ̂2
xi

= ψ̂2
xi

− µ̂x

2

i
(1)

where the squared mean estimatêψ2
xi

and the mean esti-
mateµ̂xi

are obtained by means of a first order recursive
average over the observationsxi of the random processx,
i.e.

ψ̂2
xi

= βψ̂2
xi−1

+ (1 − β)x2
i

(2)

µ̂xi
= βµ̂xi−1 + (1 − β)xi (3)

with 0 < β < 1. We assume that the smoothing parameter
β is set such that the signal is stationary within 3 - 4 times
the smoothing time constant. Then the expected value of
the estimator (1) can be derived as

E[σ̂2
xi

] =
2β

1 + β
σ2

x

(
1−

1 − β

β

∞∑

κ=1

βκρxx(κ)

)
(4)

whereρxx(κ) denotes the correlation coefficient for lagκ

ρxx(κ) =
E[(xi − µx)(xi+κ − µx)]

σ2
x

.

Equation (4) shows that the population varianceσ̂2
xi

con-
stitutes a biased estimator that systematically underesti-
mates the process varianceσ2

x
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• by a factor that only depends on the smoothing pa-
rameterβ and

• by a factor that is additionally ruled by the tempo-
ral correlationρxx(κ) of the observationsxi of the
given random process.

The underestimation increases the smaller the smoothing
parameterβ and the larger the span of correlation in the
input data.
A reformulation of (4) shows that both factors amount to
the variance of the mean estimate

E[σ̂2
xi

] = σ2
x
− var{µ̂xi

} (5)

which suggests to compensate for the bias by adding the
estimated variance of the first order recursive mean esti-
mate, var{µ̂xi

}. Note however, that this compensation
term itself constitutes a variance estimate, that may be
systematically underestimated and therefore fails to com-
pletely compensate for the underestimation ofσ̂2

xi
.

3. MINIMUM STATISTICS NOISE POWER
ESTIMATOR

3.1. Variance estimation

The noise power spectral density estimator based on Min-
imum Statistics tracks the minima in the adaptively aver-
aged periodograms of the noisy signal ([1], Equ. (4))

P (λ, k) = α(λ, k)P (λ − 1, k)

+ (1 − α(λ, k))|Y (λ, k)|2 (6)

with Y (λ, k) being the short-time Fourier transform coef-
ficient of frameλ and frequency bink andα(λ, k) a time
and frequency dependent smoothing parameter [1],[5]. To
infer the mean power from an observed minimum a bias
compensation factor has to be applied. The bias compen-
sation factorBmin is a function of the length of the min-
imum search interval and the variance of the smoothed
power spectral density estimate, var{P (λ, k)}. While the
search interval length is usually fix for the algorithm the
variance of the adaptively smoothed periodogramsP (λ, k)
has to be estimated. The variance estimator used in the
Minimum Statistics noise power estimator is of the same
kind as defined in Equations (1) to (3) with the smoothing
parameter being now a function of frameλ and frequency
bin k. For convenience we keep the notation used in [1].
Then, the variance estimator at frameλ and for frequency
bin k is given by ([1], Equ.(22))

v̂ar{P (λ, k)} = P 2(λ, k) − P
2
(λ, k) (7)

whereP 2(λ, k) andP (λ, k) denote first order recursive
averages of the squared smoothed periodograms and the

mean smoothed periodograms, respectively. Using the
same reasoning as in the preceding section we conclude
that the estimated variance of the smoothed power spec-
tral density estimates is underestimated by a factor that is
ruled by the smoothing parameter and by a factor that de-
pends on the correlation of the random variableP (λ, k).
Since the bias compensation factorBmin is controlled by
the variance estimate, underestimation results in a com-
pensation factor that is too small to raise the observed
minimum value to the mean power. As a consequence,
the noise power becomes underestimated.

Correlation can have different origins:

• Correlation due to overlapping block processing be-
comes important for frame overlap of more than
50%.

• Correlation induced by lowpass filtering the squared
magnitudes of the noisy short-time Fourier coeffi-
cients, cf. (6). The smoothing is necessary to ob-
tain a low variance estimate of the power spectral
density.

• Time domain signal correlation as given for exam-
ple in babble noise.

While the correlation originating from frame overlap is
constant for a given window shape and overlap and could
therefore compensated for with a constant factor, the latter
two correlation types are signal dependent, requiring an
adaptive compensation.

3.2. Extension of the Algorithm

As in (5), the expected short-time variance estimate can
be formulated as

E[v̂ar{P (λ, k)}] = var{P (λ, k)} − var{P (λ, k)} (8)

which suggests to compensate for the underestimation term
var{P (λ, k)}. We therefore use an estimator for the com-
pensation term which is for reasons of computational effi-
ciency implemented again as an autoregressive estimator

v̂ar{P (λ, k)} = β(λ, k)v̂ar{P (λ− 1, k)}

+ (1 − β(λ, k))
(
P (λ, k) − P (λ, k)

)2

(9)

with the smoothing parameterβ(λ, k) being equal to the
coefficient used for the first order recursive average of

P 2(λ, k) andP (λ, k) andP (λ, k) denotes the mean over
the mean valuesP (λ, k)

P (λ, k) = γ(λ, k)P (λ − 1, k) + (1 − γ(λ, k))P (λ, k)
(10)
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noise power estimation
error

without extension, (7) -17.9%
with extension, (11) -7.0%

Table 1: Noise power estimation error for framewise pro-
cessing with 87.5% overlap for a stationary white Gaus-
sian noise with and without the proposed compensation
term (mean over 2200 frames and 257 frequency bins).

AWGN babble
input SNR 0.1 dB 5.1 dB
output SNR without extension, (7) 6.4 dB 6.8 dB
output SNR with extension, (11) 7.6 dB 7.6 dB

Table 2: Segmental SNR before and after noise reduction
with and without compensation term for stationary addi-
tive white Gaussian noise and for cafeteria babble noise.

with 0 < γ(λ, k) < 1. The smoothing parameterγ(λ, k)
should respect the stationarity of the noisy signal. A good
choice is for exampleγ(λ, k) =

√
α̂(λ, k) whereα̂(λ, k)

denotes the adaptive smoothing parameter in [1].
(9) constitutes a variance estimator that suffers itself from
underestimation. The amount of underestimation is again
determined by the smoothing parameter and the degree
of correlation. While a compensation of the correlation
dependent factor seems to be rather difficult we can eas-
ily compensate for the factor that depends only on the
smoothing parameter. Since the variance estimator de-
fined by (9) differs slightly from the one defined in Equa-
tions (1) to (3) the expectation of (9) turns out to have the
form of (4) multiplied with the smoothing parameter,β.
The modified variance estimator finally reads

v̂ar{P (λ, k)} = P 2(λ, k) − P
2
(λ, k)

+
1 + β(λ, k)

2β2(λ, k)
v̂ar{P (λ, k)}.

(11)

Note that with Equation (9) underestimation is covered
that is due to correlation not only of overlapping block
processing but also of correlation that is induced by low-
pass filtering the squared spectral magnitudes and correla-
tion that may be inherent in the time domain signal.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In the following we present results obtained with a single
channel noise reduction system using a Wiener filter with
a decision-directeda priori SNR estimator [6]. The anal-
ysis is performed with a Hann window of length 512 sam-
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Figure 1:Periodogram, smoothed periodogram, and noise
estimate - with and without the extension - for a speech
signal disturbed with stationary white Gaussian noise, re-
garding a single frequency bin (1340 Hz).

ples using a frame shift of 64 samples corresponding to
87.5% frame overlap. As shown in [4] the bias compensa-
tion function for the Minimum Statistics noise power esti-
mator depends on the correlation of successive frames and
should not use standard values if a window with greater
overlap than 50% is used. Therefore the appropriate bias
compensation factorsBmin have been created prior to the
subsequent investigations.

For a stationary white Gaussian noise of known variance
the noise power has been estimated with the described sys-
tem without and with the proposed extension (Equ. (7)
and (11), respectively) while keeping all other parameters
the same for both measurements. The results given in Ta-
ble 1 suggest that reducing the bias of the variance estima-
tor (7) is useful to reduce the amount of noise power un-
derestimation as observed for correlated data. However,
the proposed modification still does not result in an un-
biased noise power estimator. As it has been previously
argued this could be a consequence of the fact that the
compensation term (9) itself constitutes a variance esti-
mator that necessarily underestimates the true variance in
presence of correlated data. To alleviate this effect the av-
eraging length would have to be increased which is not
possible for a signal with limited stationarity. Therefore,
in presence of correlation, (11) improves the variance es-
timate but can not be expected to completely compensate
for the bias.

In Table 2 we present the segmental SNR improvement
for both white Gaussian noise and for cafeteria babble
noise at roughly 0 dB and 5 dB input SNR, respectively.
We observe that the segmental SNR after processing is in-
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Figure 2: Frequency mean periodogram, smoothed fre-
quency mean periodogram, and frequency mean noise es-
timate - with and without the extension - for a speech sig-
nal disturbed with stationary white Gaussian noise.

creased for the extended variance estimator (11) as com-
pared to the case without the extension (7). This result
shows that the compensation term effectively alleviates
the noise power underestimation, resulting in an increased
output SNR level.

Figures 1 and 2 document the temporal behavior of the
noise power estimator for a noisy speech signal. The pe-
riodogram, a temporally smoothed periodogram and the
noise power estimates obtained without and with the pro-
posed extension are plotted. In Figure 1 we show the result
for a single frequency bin (1340 Hz). We see that the stan-
dard noise power estimate shows a tendency to underesti-
mate the mean noise power. Although the modified noise
power estimates feature some variations which are due to
the statistical nature of the compensation term, the modi-
fied noise power estimate more frequently approaches the
actual noise power.
The effect becomes clearer if we observe values averaged
over the frequency, Fig. 2. During speech pauses the
extended noise power estimator better approximates the
mean noise power. During speech activity we notice a
slight increase of the modified noise power estimates.
To make the noise power estimator unbiased for a given
analysis-synthesis system with significant frame overlap
further measures will have to be taken. In [1] a correction
factorBc is introduced which accounts for the fact that the
noise power estimator can track increasing noise power
only with some delay and therefore the noise power would
be underestimated for highly non-stationary noise. The
factor has been empirically optimized for the algorithm
in its original form and will have to be adapted for the
extended algorithm described above.

5. CONCLUSIONS

We observe that the Minimum Statistics noise power spec-
tral density estimator [1] tends to underestimate the noise
power for the particular case when successive signal frames
are considerably correlated. Correlation can originate from
a block processing with considerable overlap, from low-
pass filtering the squared spectral magnitudes or can be
inherent part of the time domain noisy signal. We showed
that noise power underestimation originates from an first
order recursive biased variance estimator that in case of
correlated data systematically underestimates the process
variance. A term describing the underestimation has been
identified and consequently an extension of the Minimum
Statistics noise power estimator has been proposed that
turned out to alleviate the underestimation effects.
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