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ABSTRACT

In this paper, we handle the blind sparse source separation prob-
lem with time-frequency masks. Some existing methods employ
time-frequency binary masks to extract the signals, and there-
fore, the extracted signals tend to contain loud musical noise.
It causes from the winner-take-all property of the binary mask.
To overcome the problem, this paper proposes some non-binary
time-frequency masks that allow each time-frequency compo-
nent to belong to several output signals. Experimental results
show that our proposed method can separate signals with little
distortion.

1. INTRODUCTION

A time-frequency mask approach to the blind sparse source sep-
aration (BSS) is recently widely studied (e.g., [1, 2]). The time-
frequency mask approach is attractive because it can handle an
underdetermined problem where the sources outnumber the sen-
sors. With regards to these problems, we also have already pro-
posed a time-frequency mask approach that is based on the ob-
servation vector clustering [3].

The time-frequency mask methods rely on the assumption of
source sparseness. If signals are sufficiently sparse, that is, most
of the samples of each signal are almost zero, we can assume
that the sources rarely overlap. The time-frequency mask ap-
proaches employ this assumption and they usually extract each
signal by applying a time-frequency binary mask to the observed
mixture. By using the time-frequency binary mask we can ex-
tract each signal from a mixture. However, the use of binary
masks leads to too much discontinuous zero-padding to the ex-
tracted signals, and therefore, they tend to contain loud musical
noise, which is undesirable for audio applications. The zero-
padding is caused by the binary mask’s winner-take-all property:
each time-frequency point of the observed mixture is allowed to
belong to only one extracted signal.

In order to reduce the musical noise problem, in this paper,
we propose some non-binary time-frequency masks that allow
each time-frequency component to belong to several output sig-
nals. Our non-binary masks are designed by using the cluster in-
formation of the observation vector clustering [3], therefore, the
mask has the spatially-smoothness. We show that our proposed
non-binary masks can reduce musical noise with no degradation
of separation performance.

2. PROBLEM DESCRIPTION

Suppose that sources s1, . . . , sN are convolutively mixed and
observed at M sensors

xj(t) =
PN
k=1

P
l hjk(l) sk(t− l), j=1, . . . ,M, (1)

where hjk(l) represents the impulse response from source k to
sensor j. In this paper, we look especially at a situation where
the number of sources N can exceed the number of sensors M
(N > M ). We assume that N and M are known, and that the
sensor alignment does not cause the spatial aliasing problem.
Our goal is to obtain separated signals yk(t) that are estimations
of sk calculated solely from M observations.

This paper employs a time-frequency domain approach. Us-
ing a short-time Fourier transform (STFT), the convolutive mix-
tures (1) can be converted to instantaneous mixtures at each fre-
quency f :

xj(f, τ) ≈PN
k=1 hjk(f)sk(f, τ), (2)

or in vector notation,

x(f, τ) ≈PN
k=1 hk(f)sk(f, τ), (3)

where hjk(f) is the frequency response from source k to sensor
j, sk(f, τ) is the STFT of a source signal sk, and τ is a time
index. We call x = [x1, . . . , xM ]T an observation vector and
hk = [h1k, . . . , hMk]T is a vector of the frequency responses
from source sk to all sensors.

We assume the sparseness of sources in the time-frequency
domain. This assumption has been widely employed for solving
the underdetermined problem (e.g. [1, 2, 3]). When the signals
are sufficiently sparse, we can assume that the sources rarely
overlap at each time-frequency point, and (3) can be approxi-
mated as

x(f, τ) ≈ hk(f)sk(f, τ), k ∈ {1, · · · , N}, (4)

where sk(f, τ) is a dominant source at the time-frequency point
(f, τ). For instance this is true for speech signals in the time-
frequency domain [1].

3. CONVENTIONAL BINARY MASK APPROACH

3.1. Method

Here we employ the method proposed in [3]. First, we nor-
malize all observation vectors x(f, τ) for all time-frequency points
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Figure 1: Flow of the time-frequency mask approach.

(f, τ). The normalization includes phase-normalization with re-
spect to a sensor J and the frequency-normalization,

x̄j(f, τ)← |xj(f, τ)| exp

»

arg[xj(f, τ)/xJ(f, τ)]

4fc−1dmax

–
(5)

where c is the propagation velocity and dmax is the maximum
distance between sensor J and a sensor ∀j ∈ {1, . . . ,M} [3].
Then, we apply unit-norm normalization

x̄(f, τ)← x̄(f, τ) / ||x̄(f, τ)|| (6)

to x̄(f, τ) = [x̄1(f, τ), . . . , x̄M (f, τ)]T .
Then we find clusters C1, . . . , CN formed by all normalized

vectors x̄(f, τ). The clustering criterion is to minimize the total
sumJ of the squared distances d2

k between cluster members and
their centroid:

J =
MX

k=1

X

x̄(f,τ)∈Ck
d2
k(f, τ) (7)

dk(f, τ) = ||x̄(f, τ)− ck||. (8)

The clustering is realized by the following iterative updates:

Ck = {x̄(f, τ) | k= argminid
2
i (f, τ)} (9)

ck ← E[x̄(f, τ)]x̄∈Ck , ck ← ck/||ck||, (10)

where E[·]x̄∈Ck is a mean operator for the members of a cluster
Ck. This minimization can be performed efficiently with the k-
means clustering algorithm [4] with a given source number N .

Because each resulting cluster corresponds to an individual
source, finally, we have separated signals yk(f, τ) =Mk(f, τ)xj(f, τ)
where

Mk(f, τ) =


1 x̄(f, τ) ∈ Ck
0 otherwise (11)

then we have time-domain outputs yk(t) by using an inverse
STFT (ISTFT).

3.2. Rationale

Let assume that an impulse response hjk(f) is modeled as

hjk(f) ≈ λjk exp [−2πfτjk]. (12)

where λjk ≥ 0 and τjk are the attenuation and the time delay
from source k to sensor j. If we assume an anechoic situation
and no-spatial aliasing, the parameters λjk and τjk are deter-
mined solely by the geometric condition of the sources and sen-
sors. Considering (4) and (12), the normalized vector x̄(f, τ)
can be written as

x̄j(f, τ) ≈ λjk
Ak

exp

»
− π(τjk − τJk)

2c−1dmax

–
, (13)

where Ak =
qPM

j=1λ
2
jk. We can see that the normalized ob-

servation vector x̄(f, τ) depends only on the source geometry
λjk and τjk of the source sk, which is dominant at the time-
frequency point (f, τ). Therefore, the normalized observation
vectors can be clustered based on the source geometry. In other
words, the observation vectors x̄(f, τ) in a cluster Ck are as-
sumed to be the signal components coming from a physically
spatially localized region.

4. NON-BINARY MASK PROPOSALS

The binary mask (11) can extract each signal from a mixture,
however, it causes much discontinuity in the extracted signals,
and therefore, the musical noise occurs. It arises as a result of
the binary mask’s winner-take-all property, as mentioned in Sec-
tion 1. In order to relax the property, in this section, we propose
some non-binary time-frequency masks that allow each time-
frequency component to belong to several output signals.

Here, we specify the mask based on the distances dk(f, τ)
(8) between cluster members and their centroid, which was uti-
lized in the clustering procedure (9). From the fact mentioned
in Sec. 3.2, our proposing non-binary masks become a spatially
smooth mask.

4.1. MASK1: Sigmoid based mask

The first mask has the shape of the sigmoid function [5]. The
mask is defined as

Mk(f, τ) = Mk(dk(f, τ))

=
1

1 + exp [g(dk(f, τ)− thk)]
(14)

where thk and g are parameters deciding the shape of the sig-
moid function. The smaller thk, the more interference power is
suppressed, but the more musical noise sound in the extracted
signals. An example sigmoid mask is shown in Fig. 2.

4.2. MASK2: Baysian theorem based mask

As the second mask, we newly propose to use the Bayse’s the-
orem by assuming each cluster member x̄(f, τ) ∈ Ck has a
complex Gaussian distribution,

p(x̄|Ck) =
1

(2π)N |Σk| exp
h
−(x̄− ck)HΣ−1

k (x̄− ck)
i

(15)
where Σk is a covariance matrix of x̄(f, τ) ∈ Ck. Note that
the term (x̄ − ck)HΣ−1

k (x̄ − ck) in (15) is the square distance
d2
k normalized by Σk. With the Bayse’s theorem, the posterior

probability of x̄(f, τ) being x̄(f, τ) ∈ Ck is given as

P (Ck|x̄(f, τ)) =
p (x̄(f, τ)|Ck)P (Ck)

p(x̄(f, τ))
(16)

whereP (Ck) is known priori (here we assumeP (Ck) = 1/N,∀ k),
and p(x̄(f, τ)) =

PN
k=1 p(x̄(f, τ)|Ck)P (Ck).

Here we use this posterior as our mask,

Mk(f, τ) = P (Ck|x̄(f, τ)) (17)

The mask has a property that
PN
k=1Mk(f, τ) = 1, because of

the normalization with the denominator of (16). An example
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mask is shown in Fig. 3. It looks scattered. This is because even
if dk(f, τ) = dk(f ′, τ ′), it does not mean x̄(f, τ) = x̄(f ′, τ ′)
and therefore p(x̄(f, τ)|Ck) 6= p(x̄(f ′, τ ′)|Ck).

4.3. MASK3: Directivity pattern based mask

If we know the sensor configuration, we can employ the direc-
tivity pattern of a fixed null-beamformer (NBF) that makes nulls
towards the interference directions [6] as our non-binary mask.
This mask realizes a spatially smooth mask, straightforwardly.

STEP1: Direction estimation
First, we have to estimate the direction of arrivals (DOAs) qk of
allN sources, where qk is a 3-dimensional vector of a unit-norm
representing the direction of the source sk. DOAs are estimated
by the method described in [7]

q̂k = −2dmax

π
P+arg [ck] (18)

whereP = [p1−pJ , · · · ,pM−pJ ]T and pj is a 3-dimensional
vector representing the location of sensor j.

STEP2: Mask design by the directivity pattern of NBF
Then, we make an NBF that makes nulls towardsN−1 interfer-
ence directions. Remember that we have only M < N sensors
in an underdetermined case. In order to formN−1 nulls, we as-
sume V > (N −1) + 1 (virtual) sensors [6] of arbitral positions
of V virtual sensors p′j (j = 1, · · · , V ).

Then NBFW (f) is calculated byW (f) = H−1
NBF(f), where

HNBF(f) is a (V × V ) matrix whose ji-th element HNBFji(f) =
exp

ˆ−2πfc−1(p′j − p′J)T q̂i
˜
, q̂1 = q̂k, and k is the index of

the source to be extracted. The directivity pattern of the NBF is
obtained as a function of DOA q

Fk(f,q) =

VX
j=1

W1j(f) exp [−2πfc−1(p′j − p′J)Tq]. (19)

An example gain pattern of (19) is given by Fig. 4 (a).
By employing this gain pattern, our proposed mask becomes

Mk(f, τ) = Fk(f,q(f, τ)) (20)

where q(f, τ) is the estimated DOA of a observation x̄(f, τ) at
each time-frequency [7].

We can modify the mask so that it has a small constant gain
except for a main beam [6]. Figure 4 (b) shows an example.

5. EXPERIMENTS

5.1. Experimental conditions

We evaluated the performance with 5-second English speech sources
and measured impulse responses in a room (Fig. 5). The obser-
vations were simulated by (1). The sampling rate was 8 kHz, the
STFT frame size L = 512 and the frame shift was L/2, L/4
and L/8. Here, we only tested the 3-microphones and 4-sources
case.

The separation performance was evaluated in terms of the
signal-to-interference ratio (SIR) improvement [3]. Moreover,
we also evaluated the separated sound quality with the signal to
distortion ratio (SDR) [3]. We investigated four speaker combi-
nations and averaged the results for all outputs. Furthermore, we
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Figure 2: Sigmoid mask (MASK1). The horizontal axis is the
distance d1 from the centroid c1.
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Figure 3: Baysian mask (MASK2). The horizontal
axis is the normalized distance from the centroid c1:q

(x̄− c1)HΣ−1
1 (x̄− c1), see section 4.2.

conducted a small subjective test with four listeners, since SDR
cannot evaluate musical noise [8]. It was a paired comparison
test, where we paired up a conventional binary mask output with
a proposed smooth mask output, and each listener judged which
has less musical noise for many pairs.

5.2. MASKs’ parameters

For MASK1, g was 7.8, that realized as good SIR as with a
conventional binary mask, and thk was the standard deviation
of dk(f, τ) ∈ Ck. For MASK2, P (Ck) = 1/N,∀ k, that is we
assume the same priori for all k. For MASK3, the number of the
virtual sensors V = 4.

5.3. Results

Results are shown in Table 1, where “BM” denotes the con-
ventional binary mask (11), and MASK3’ means the modified
MASK3 with the same way as Fig. 4(b). By using non-binary
masks, we improved the SDR without degrading the SIR. Table
1 also have the result of the listening test with paired comparison
(PC) for the frame shift=L/4. The PC values show the percent-
age of MASK’s superiority over the BM in musical noise

PC = 100× # of pairs where MASK is better than BM
# of all pairs in the test
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Figure 4: (a) Example directivity based mask (MASK3) and (b)
its modification (MASK3’) for extracting s1 in a setting shown
in Fig. 5. The horizontal axis is the azimuth θ whose definition
is shown in Fig. 5.
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Figure 5: Experimental setup. θk (k = 1, · · · , 4) are the azimuth
values of signals. The elevation φk = 0, ∀k.

where the numerator means # of pairs where a MASK{1,2,3,3’}
output has less musical noise than a conventional binary mask
output. The listening test results show that our non-binary masks
decrease the musical noise significantly.

The observed phenomena were as follows.

1. MASK1 achieved good performance in spite of its sim-
ple realization (14). It has only one parameter g and its
setting is not difficult.

2. The ability to reduce musical noise of MASK2 (baysian
mask) was smaller than these of other masks. This is be-
cause that the MASK2 is a non-binary mask but it does
not have spatial continuity shown in Fig. 3.

3. SIR of MASK3 was not good because MASK3 has large
gains between null directions (see Fig. 4(a)). On the other
hand, MASK3’ (Fig. 4(b)) realized good performance in
SIR with less musical noise.

4. With our non-binary masks the interferences in outputs
were now understandable, although the effect is not re-

Table 1: Experimental results. SIR and SDR are in dB. “Shift”
stands for the frame shift. ”PC” is the result of the listening test
when Shift=L/4.

ShiftL/2 ShiftL/4 ShiftL/8 PC(%)
BM SIRi 13.5 14.5 14.9 -

SDRi 8.1 8.9 9.1
MASK1 SIRi 13.4 14.6 14.7 90.6

SDRi 8.4 8.6 8.7
MASK2 SIRi 14.2 15.1 15.3 62.5

SDRi 8.5 9.2 9.3
MASK3 SIRi 12.1 13.0 13.2 87.5

SDRi 8.5 9.3 9.4
MASK3’ SIRi 13.1 13.9 14.2 81.3

SDRi 8.9 9.6 9.8

flected in SIR. This was because the interferences’ resid-
ual also stayed without zero-padding.

5. Our non-binary masks worked effectively when the frame
shift was a half or quarter of a frame size (Shift = L/2
or L/4). For the fine frame shift (Shift=L/8), the musi-
cal noise of BM was not so loud, and therefore, our non-
binary masks had small impact.

6. CONCLUSION

We proposed spatially smooth non-binary masks which allow
each time-frequency component to belong to several output sig-
nals. Although they do not assure the perfect time-continuity of
the output signals, the proposed masks effectively reduced the
musical noise without decreasing the separation performance.
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