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ABSTRACT

In this paper we derive minimum mean-square error (MMSE)
amplitude estimators for DFT-based noise suppression. Theop-
timal estimators are found under a generalized Gamma distribu-
tion, which takes as special cases (different parameter settings)
all priors used in noise suppression schemes so far. Deriving
the MMSE estimators involves integration of (weighted) Bessel
functions. In order to end up with analytical solutions, forsome
parameter settings we have to approximate the Bessel functions.
In this paper we combine two types of approximations by using
a simple binary decision between the two. We show by computer
simulations that the estimators thus obtained are very close to the
exact MMSE estimators for all SNR conditions. The presented
estimators lead to improved performance compared to the sup-
pression rule proposed by Ephraim and Malah. Furthermore, the
maximum performance is the same as compared to state of the
art amplitude estimators.

1. INTRODUCTION

The increasing number of speech processing applications has
resulted in more interest for ambient noise reduction methods.
Among those methods is the class of single-channel speech en-
hancement methods. Many of these methods are based on the
discrete Fourier transform (DFT) where speech DFT coefficients
are estimated on a frame-by-frame basis by processing the noisy
DFT coefficients. Existing methods estimate either the complex-
valued speech DFT coefficients or the DFT amplitudes. It has
often been assumed that DFT coefficients have a Gaussian dis-
tribution, e.g. [1]. Both complex DFT and amplitude estimators
can be derived by minimizing the mean-square error (MMSE)
or finding the maximuma posteriori(MAP) estimate, under this
assumption. More recently there has been increased interest for
estimators under supergaussian distributions, because they give a
better approximation of the observed distribution of speech DFT
coefficients. In [2] complex DFT MMSE estimators under the
Gamma and Laplace distributions were derived.
In this paper we investigate MMSE speech amplitude estimators
under the generalized Gamma distribution of the following form

fA(a) =
γβν

Γ(ν)
aγν−1 exp(−βaγ), (1)
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whereβ > 0, γ > 0, ν > 0, a ≥ 0, and the random variable
A represents the DFT magnitude. In [3] a MAP amplitude esti-
mator was proposed for the caseγ = 1. In this paper, we derive
MMSE amplitude estimators for the distribution classesγ = 1
andγ = 2. Forγ = 2 the derivation is exact. A special case of
this class appears forν = 1 when the density in Eq. (1) equals
the Rayleigh prior used in [1]. For the caseγ = 1 we cannot de-
rive exact MMSE estimators analytically, and therefore twoap-
proximations are applied, one of which is most accurate at low
SNRs and the other at high SNRs. Analytical expressions can
be found under these approximations. Furthermore, it is shown
that a simple binary strategy can be used to choose between the
resulting amplitude estimators.

2. MMSE ESTIMATION OF AMPLITUDES

We assume that the speech and the noise process are uncorrelated
and that the noise process is additive, i.e.,

X(k, m) = S(k, m) + W (k, m), (2)

whereX(k, m), S(k, m), W (k,m) ∈ C are complex-valued
random variables representing the DFT coefficients obtained in
signal framem at frequency indexk from the noisy speech,
clean speech and noise process, respectively. Since DFT co-
efficients from different time frames and frequency indicesare
assumed to be independent, the indicesm andk will be omit-
ted for simplicity. We can writeS = AejΦ andX = RejΘ,
where random variablesA andR represent the clean and noisy
amplitude, andΦ andΘ the corresponding phase values. In this
work we focus on MMSE estimation of the clean amplitudesA.
MMSE estimators for complex DFT coefficients under similar
distribution assumptions are derived in [4]. The MMSE estimate
of A is the expectation of the clean amplitude conditional on the
noisy amplituder, i.e., E{A|r}. With Bayes’ formula we can
express the MMSE estimatêA as

Â = E{A|r} =

R∞
0

afR|A(r|a)fA(a)daR∞
0

fR|A(r|a)fA(a)da
. (3)

Assuming that the noise DFT coefficients have a zero-mean Gaus-
sian density,fR|A(r|a) can be written as [5]

fR|A(r|a) =
2r

σ2
W

exp

�
−r2 + a2

σ2
W

�
I0

�
2ar

σ2
W

�
, (4)

whereI0 is the zero’th order modified Bessel function of the first
kind, andσ2

W = E{|W |2} is the noise spectral variance. In the
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following we derive MMSE amplitude estimators for the cases
γ = 1 andγ = 2.

2.1. MMSE estimators for γ = 2
Inserting Eq. (1) withγ = 2 and Eq. (4) into Eq. (3) gives

Â(2) =

R∞
0

a2ν exp
�
− a2

σ2
W

− βa2
�

I0

�
2ar
σ2

W

�
daR∞

0
a2ν−1 exp

�
− a2

σ2
W

− βa2
�

I0

�
2ar
σ2

W

�
da

, (5)

where the superscript(2) indicates thatγ = 2. Using [6, Thm.
6.643.2], we can solve the integrals forν > 0. After inserting
the relation betweenβ and the second momentE{A2}, which
for this case isβ = ν/σ2

S , with σ2
S = E{|S|2}, we obtain [4]

Â(2) =
Γ(ν + 1/2)

Γ(ν)

√
Q

ζ

M(−ν,0) (Q)

M(−ν+1/2,0) (Q)
r. (6)

whereQ , ζξ/(ν+ξ), Mν,µ is known as the Whittaker function
andζ = |r|2/σ2

W andξ = σ2
S/σ2

W are known as thea posteriori
anda priori SNR, respectively. The special caseν = 1 is the
estimator derived in [1].

2.2. MMSE estimators for γ = 1
Forγ = 1, Eq. (3) becomes:

Â(1) =

R∞
0

aν exp
�
− a2

σ2
W

− βa
�

I0

�
2ar
σ2

W

�
daR∞

0
aν−1 exp

�
− a2

σ2
W

− βa
�

I0

�
2ar
σ2

W

�
da

, (7)

whereβ is now related to the speech spectral variance asβ2 =
ν(ν+1)/σ2

S . Analytical solutions to these integrals are unknown
to the authors, but introducing approximations of the Bessel func-
tions allows us to solve the integrals analytically.

2.2.1. Bessel function approximation for small arguments

For small arguments of the Bessel functionI0, we approximate
it using a Taylor series expansion aroundx = 0. The Taylor
series ofI0, truncated afterK terms, is given by [7]

I0(x; K) ,
K−1X
k=0

�x

2

�2k 1

(k!)2
. (8)

Substituting this expression forI0( · ; K) in Eq. (7) gives

Â
(1)
K ,

R∞
0

aν exp
�
− a2

σ2
W

− βa
�K−1P

k=0

�
ar

σ2
W

�2k �
1
k!

�2
daR∞

0
aν−1 exp

�
− a2

σ2
W

− βa
�K−1P

k=0

�
ar

σ2
W

�2k �
1
k!

�2
da

,

which, forν > 0, using [6, Thm. 3.462.1] leads to [4]

Â
(1)
K =

K−1P
k=0

�q
ζ
2

�2k �
1
k!

�2
Γ(ν + 1 + 2k)D−(ν+1+2k) (T )

√
2ζ

K−1P
k=0

�q
ζ
2

�2k �
1
k!

�2
Γ(ν + 2k)D−(ν+2k) (T )

r,

with T ,
p

(ν + 1)ν/2ξ. ForK →∞, Â
(1)
K → Â(1) [4].
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Figure 1:Approximated gain functions forξ = 0 dB andν = 0.
A) G

(1)
85 with K = 85 terms, and numerically evaluated gain

function,G(1)
num B) G

(1)
5 and high-SNR approximation,G(1)

≫ .

2.2.2. Bessel function approximation for large arguments

For large input arguments, however, a large value ofK is needed
to accurately approximateI0, which may result in numerical
problems and demanding computations. Therefore, for this case
the following well-known approximation ofI0 is applied [7]:

I0(x) ∼ 1√
2πx

exp(x). (9)

Substituting this approximation in Eq. (7) and using [6, Thm.
3.462.1] we find forν > 0.5 [4]

Â
(1)
≫ , (ν − 1/2)

r
1

2ζ

D−(ν+1/2)(P )

D−(ν−1/2)(P )
r, (10)

whereP ,
p

ν(ν + 1)/
√

2ξ −
√

2ζ, andDν is a parabolic
cylinder function of orderν.

2.2.3. CombiningA(1)
K andA

(1)
≫

We now describe a simple and efficient strategy for combining
Â

(1)
K andÂ

(1)
≫ which leads to a combined estimator that is a good

approximation of the true MMSE estimator under all conditions
of interest. Which of the approximations considered is closest to
the true MMSE estimator depends on thea priori anda poste-
riori SNRs, and the value ofν. Consider the following change
of variable:x = 2ar/σ2

W . This transformation makes it easier
to see under which conditions approximations are expected to be
accurate. The expression for̂A(1) now becomes

Â(1) =
σ2

W

2r

R∞
0

xν exp
h
−x2

4ζ
− µx

2
√

ζξ

i
I0 (x) dxR∞

0
xν−1 exp

h
−x2

4ζ
− µx

2
√

ζξ

i
I0 (x) dx

, (11)

with µ =
p

ν(ν + 1). The functionxν exp[−x2

4ζ
− µx

2
√

ζξ
] at-

tains its maximum for smallx when the exponentials decay fast
and xν rises slowly. In this case it is especially important to
approximate the Bessel function well at small arguments. This
happens whenζ or

√
ζξ is small andν is small. For these condi-

tions we may expect̂A(1)
K to be more accurate than̂A(1)

≫ , while

Â
(1)
≫ is more accurate for large SNRs. Note thatζ is the more

dominant parameter ofζ andξ, becauseξ is not present in the
quadratic term in the exponentials.
A gain functionG(ζ, ξ) for a certain amplitude estimator is de-
fined as the estimate divided by the noisy amplitude, for exam-
ple G

(1)
MMSE(ζ, ξ) = Â(1)/r is the MMSE gain function for
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γ = 1. As an example, Fig. 1 shows several gain functions for
ana priori SNRξ of 0 dB andν = 1.6 as a function ofa poste-
riori SNRζ. Fig. 1A shows the gain functionG(1)

85 , which uses
K = 85 terms, andG(1)

num which evaluatesG(1)
MMSE using nu-

merical integration of (7). The algorithms in [8] have been used
to evaluate the parabolic cylinder functions. We see thatG

(1)
85

andG
(1)
num lie virtually on top of each other, showing thatG

(1)
85

is a very good approximation of the true MMSE gain function for
these combinations ofa priori anda posteriori SNRs. These
gain functions could not be evaluated accurately for largera pos-
teriori SNRs, mainly because of overflow problems. Fig. 1B
showsG(1)

5 andG
(1)
≫ from Eq. (10). Comparison with Fig. 1A

shows thatG(1)
5 is too small for highζ, while G

(1)
≫ is too small

for low ζ. It can easily be proven thatG(1)
K is always less than

G
(1)
MMSE for all K [4], butG(1)

≫ can sometimes be slightly larger

than G
(1)
MMSE . Numerical calculations, however, have shown

that G(1)
≫ does not exceedG(1)

MMSE by more than 0.10 dB, for
the parameter range of interest. These results, and the difference
in behavior of the two approximations as illustrated in Fig.1B,
suggests a simple binary strategy: take themaximumof the two
approximationsG(1)

K andG
(1)
≫ as the gain function.

2.2.4. Error analysis

For the range1 6 ν 6 3.2, −20 dB 6 ξ 6 +20 dB,
−20 dB 6 ζ 6 +14 dB the true MMSE gain functionG(1)

MMSE

could be evaluated without numerical problems. This range is
sufficient, because for largerζ, the accuracy of the high-SNR
approximationG(1)

≫ only increases, so the maximum error will
not increase. For the binary decisionmax[ G

(1)
5 , G

(1)
≫ ], the max-

imum positive error was+0.35 dB, and the maximum negative
error was−0.10 dB. A positive error means thatG(1)

MMSE was

larger than the approximation. WhenG
(1)
10 is used in a binary de-

cision withG
(1)
≫ , i.e.,max[ G

(1)
10 , G

(1)
≫ ], the maximum positive

and negative errors are+0.12 dB and−0.10 dB, respectively.
However, the maximum positive error increases with decreasing
ν. Forν = 0.51, about 20 terms are needed in̂A

(1)
K . Although

G
(1)
≫ can be larger thanG(1)

MMSE , it will not exceed it by more
than0.10 dB.

2.3. Input-output characteristics
In Fig. 2 we show input-output (IO) characteristics of the derived
estimators. In Fig. 2A we consider the caseγ = 1 whereÂ

(1)
5 ,

andÂ
(1)
≫ are combined into one estimatêA(1)

C by means of the

binary decision, that is,̂A(1)
C = max[ Â

(1)
5 , Â

(1)
≫ ]. The values

ν ∈ {0.8, 1, 1.5}, the constraintσ2
S + σ2

W = 2, andξ = −5 dB
andξ = 5 dB are used. The IO characteristics are fairly insensi-
tive to ν. In Fig. 2B we considerν ∈ {0.5, 1, 1.5} for the case
γ = 2. The IO characteristics are more sensitive toν values here
and a smallerν value clearly leads to less suppression at higher
input values and to more suppression for lower input values.

3. SIMULATION RESULTS

In this section we present experimental results forÂ(2) and two
approximations ofÂ(1), namelyÂ

(1)
C = max[ Â

(1)
5 , Â

(1)
≫ ] and

Â
(1)
≫ . Further, we make comparisons with a modification of the

MAP amplitude estimator as presented in [3], which is a MAP

estimator under a generalized Gamma distribution withγ = 1.
The MAP estimator proposed originally in [3] is

Â
(1)
MAP = max

a
log fA(a)fR|a(r|a) (12)

using the approximation for the Bessel function Eq. (9). This
approximation is madebeforetaking the derivative with respect
to a to find the maximum. This leads to the gain function

G
(1)
MAP = u+

r
u2 +

ν′ − 0.5

2ζ
, u = 1/2− µ

4
√

ζξ
, (13)

whereν ′ = ν − 1 and which is valid forν ′ > 0.5 only. A
joint amplitude and phase MAP estimator was proposed as well,
which can be derived without approximations. The gain function
GJMAP of the joint MAP estimator is given by

G
(1)
JMAP = u +

r
u2 +

ν′

2ζ
, u = 1/2− µ

4
√

ζξ
. (14)

This estimator allows for a broader range ofν ′-values, namely
ν ′ > 0. Our first modification concerns the order in which
an approximation is made and the derivative taken in Eq. (12).
More specifically, we compute the amplitude MAP estimator by
first taking the derivative in Eq. (12) andthenusing the large-
argument approximationI1/I0 ≈ 1, whereI1 is the first-order
modified Bessel function of the first kind. Interestingly, the re-
sulting MAP estimator is identical to the joint MAP estimator in
Eq. (14). Our second modification concerns the parameterµ.
In [3] the estimators were derived as a function of two free pa-
rameters, while there is in fact only one free parameter. Theam-
plitude MAP estimator we use in our experiments is modified ac-
cordingly and is equal to Eq. (14) withµ set to

p
ν(ν + 1) [4].

For the experiments, the Noizeus database [9] was used which
consists of 30 IRS-filtered speech signals sampled at 8 kHz, con-
taminated by various additive noise sources. We added computer-
generated telephone-bandwidth white Gaussian noise as an extra
noise source, since it is not present in the data base. The frame
size is 256 samples, with an overlap of 50 %. The decision-
directed approach with a smoothing factorα = 0.98 was used
to estimateξ [1]. The noise variance was estimated with the
minimum statistics approach [10]. Further, in all experiments
the maximum suppression was limited to 0.1.
To express the performance of the estimators in terms of speech
distortion and noise reduction separately, we follow the approach
of [3] and define segmental speech SNR as

SNR-S=
1

|P|
X
p∈P

10 log10

�
‖sp‖22

‖sp − s̃p‖22

�
, (15)

where the vectorsp represents thep’th clean speech (time-domain)
frame and̃sp is the result of applying the gain functions to the
clean speech in the frequency domain and transforming back to
the time domain. To discard non-speech frames, an index setP
is used of clean signal frames with energy no less than 30 dB
of the maximum frame energy in a particular speech signal.|P|
denotes the cardinality ofP . Similarly, noise reduction is mea-
sured as

SNR-N=
1

|P|
X
p∈P

10 log10

�‖wp‖22
‖w̃p‖22

�
, (16)
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Â

(1)
≫

Eq. (10)

Â
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wherewp is thep’th noise frame, and̃wp is the residual noise
frame resulting from applying the noise suppression filter towp.
Fig. 4 shows performance in terms of SNR-S versus SNR-N for
several values ofν and signals degraded by white noise. For a
fixed SNR-N,Â(1)

C often leads to the best speech quality. This
is also audible, in the sense that weak speech components are
preserved slightly better than with Eq. (14). The distortion
measureD =

P
m,k(A(k,m)− Â(k, m))2 is also considered,

which is an estimate of the quantity minimized by the estimators
derived in this paper. Fig. 3 plotsD versusν. We see that̂A(1)

C

improves overÂ(1)
≫ and the MAP estimator, and that̂A(2) scores

very well for ν ≈ 0.1. Fig. 5 shows performance in terms of
PESQ [11] versusν for input SNRs of 5 and 15 dB and speech
signals degraded by street noise and white noise. The maximum
attainable PESQ scores are about the same for all estimators.
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