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ABSTRACT

A common way of increasing the robustness of affine projec-
tion and normalized least mean squares adaptive filterigor al
rithms, is to add a scaled identity regularization matrixte
input signal correlation matrix before inversion. This laat
method can also be interpreted as the result of minimizing a
regularized underdetermined least squares criterion.ebiar,

by relating this criterion to linear minimum mean squareerr
estimation, we can derive MSE optimal APA and NLMS algo-
rithms, which feature a regularization matrix that is notese
sarily a scaled identity matrix. The proposed algorithnieval

for incorporating prior knowledge on both the near-end aign
and the true room impulse response, and are intimatelydinke
to Levenberg-Marquardt regularization and proportiorsatap-
tation. Simulation results of echo and feedback cancetagi-
periments confirm that the adaptive filter convergence spadd
tracking properties may be considerably improved usingtbe
posed algorithms.

1. INTRODUCTION

Several acoustic signal processing applications, suchastc
echo cancellation (AEC) [1] or adaptive feedback candelat
(AFC) [2], require the identification of a room impulse respe
(RIR). A typical AEC scenario is depicted in Fig. 1. The true
RIR coefficients of the echo path between the loudspeaker and
the microphone are collected in the parameter vector

£2[fo h Far] " ®

of known lengthnz + 1. The loudspeaker plays back the far-
end signak(t), which generates an echo sigagt) = u” (¢t)f

at the microphone position, with the loudspeaker signatorec
defined as

u(t) = [u(t) @)

The echo signat(t) is picked up by the microphone, in addition
to a local signab(t) referred to as the “near-end” signal, hence
the microphone signal can be written @) = z(¢) + v(t).
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Figure 1: RIR identification in an AEC scenario.

It is important to note that the near-end signal is in mostiapp
cations the signal of interest, however, from a system itient
cation point of view,v(t) is a disturbance to the estimation of
the RIR. If at timet a RIR estimatef(¢) is available, then an
echo-compensated signal can be calculated(8s = y(t) —
u” (t)£(¢), which approximates the near-end signé).

A very popular recursive identification algorithm in roonoas-
tic applications is the affine projection algorithm (APA],[dlue

to its satisfactory convergence speed for colored inputadsy
and itsO(nr) computational complexity per iteration. The APA
with projection ordetM and step size is given by

f(t) =t —1) + pUBUT®)U®R) + oI 'e(t), (3)

e(t) =y(t) - UT ()t — 1), 4)

with the data matrices defined as follows:
U(t) £ [u(t) u(t — M+1)], (5)
y(t) 2 [y(t) y(t—M+1)]". (6)

The well-known normalized least mean squares (NLMS) algo-
rithm can then be obtained from the APA by setting= 1:

u(t)e(t)
u?(t)u(t) + o’ ™

e(t) = y(t) —u" (F(t - 1). ®)

In this paper, we focus on the regularization part of the abov
algorithms. A common problem in room acoustic applicatisns
that the matrixUT (¢)U(t), appearing in (3), is ill-conditioned
or even singular, due to poor excitation. If no regularizati

is applied, the lack of excitation may lead to divergencehef t
adaptive filter, in particular during double-talk periods( when
both the far-end and near-end signals are non-zero). The sta
dard solution consists in adding & x M scaled identity ma-
trix oI to U7 (t)U(t) before inverting the matrix. It is known

f)=Fft—-1)+pn
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that the regularization parametershould ideally be an a priori
estimate of the near-end signal power [1], yet this paramiste
often chosen to be an arbitrary, small number.

Whereas this traditional regularization approach is arhea-
method to avoid the inversion of an ill-conditioned mattixe
regularized APA and NLMS algorithms described above cam als
be obtained by minimization of a criterion which originatesm
minimizing the mean square error (MSE) between the estuinate
and true RIR. In this framework, it appears that the existipg
proach towards regularization can be optimized by takirig in
account any prior knowledge, not only on the near-end sjgnal
but also on the true RIR.

In Section 2, we briefly present the MSE optimal approach to-
wards regularization, referring to [3] for a more detailegla-
nation. We also indicate how a diagonal (and not necessarily
scaled identity) regularization matrix can be constructibet
approaches the MSE optimal regularization matrix, usingea p
viously proposed 3-parameter RIR model [3]. Then in Section
3, we show how minimization of the proposed criterion leads
to MSE optimal APA and NLMS algorithms, which exhibit fea-
tures known as leakage and proportionate adaptation. Fhe re
sulting algorithms are moreover intimately linked to thelely
used Levenberg-Marquardt regularization approach farsie
least squares (RLS) algorithms [3], [4], and provide neviginis

in the properties of the proportional NLMS (PNLMS) [5], [6]
and proportionate APA (PAPA) [7] algorithms. Finally, incSe
tion 4, simulation results are shown, which confirm the impb
convergence behaviour of the proposed algorithms, bothtio e
and feedback cancellation problems.

2. MSE OPTIMAL REGULARIZATION
In [3], it is shown that there is a strong link between regular

ization and linear minimum mean square error estimation. In
particular, minimizing the MSE criterion

is shown to be equivalent to minimizing a weighted and regula
ized least squares criterion:

{[y(t) —U RO Ry (Dly(8) - UT (D)E(1)]

+E(t) — fo) "Re M [E()  fo }.

min B [B(t) — 17 [E(t) — f]

9

min
HO!

(10)

The equivalence holds only in a Bayesian framework, in which
not only the near-end signal vecter(t) = [v(t) ... v(t —

M + 1)], but also the true RIR is considered to be drawn from a
stochastic vector process, on which some prior knowledge ma
be available through their means and covariance matriees, d
fined as

{E{v(t)} =0, (11)
cof{v(t)} = E{v(t)v' (1)} = Ry (1), (12)
E{f} = fo, (13)
cov{f} = B{(f — fo)(f — fo)" } = Re. (14)

The criterion in (10) features both a least squares data terca
regularization term penalizing the deviation of the RIRreate

from the true RIR expected value. The relative importance of
these two terms is governed by the inverse covariance reatric
of the near-end signal and true RIR distributions.

Before deriving the MSE optimal APA and NLMS algorithms,
we comment on the choice of the covariance matiRe$t) and

R:. In this paper, we assume that the near-end signal is drawn
from a Gaussian white noise process with variangé), such
thatR. (¢) is a diagonal matrix:

Ry (t) = diag{o2(t),o0(t — 1),...,00(t — M +1)}. (15)

The general case of a non-white near-end signal is desdiribed
[3]. Also, in the sequel, the true RIR covariance malRx is
restricted to be diagonal. This leads to@twr) computational
complexity when evaluating matrix-vector products invoty
R, and still allowsn r + 1 degrees of freedom in contrast to the
traditional scaled identity matrix approach with only oregcke

of freedom. We may construct a diagonal estimateRgrby
collecting prior knowledge on the acoustic setup, e.g.rtloen
volume, loudspeaker and microphone positions, wall alsorp
coefficients, etc., as described in [3].

3. REGULARIZED APA AND NLMS ALGORITHMS

Minimizing the criterion in (10), and subsequently apptyite
matrix inversion lemma, leads to the following underdeteed
estimate:

f(t)=fo+R:U)[UT ()R U (1) +Ry (t)] [y (t)—U"(t)fo].

A recursive algorithm can be obtained by explicitly bringim
the dependency of(t — 1), which leads to:

f(t)="fo
HI-[UBR, ' (OUT () + Re '] 'Re ' HE(t—1) — fo]
+RU)[UT ()R:U () + Ry ()] [y (1) — UT (1)F(t—1)].

It can be seen that the minimizing estimate of the criterion i
(10), consists of three terms: the mean valyef the true RIR
distribution, a leakage term depending on the deviaffdn —

1) — fo] of the previous estimate from the mean value, and a
proportionate adaptation term. The leakage term disappmar
choosingfy f(t — 1), and hence we obtain a Levenberg-
Marquardt type of regularization [3]. If we finally introdea
relaxation factoru, we end up with the so-called Levenberg-
Marquardt regularized affine projection algorithm (LMRA)P
and, when the projection order is set6 = 1, the Levenberg-
Marquardt regularized normalized least mean squares (LMR-
NLMS) algorithm, which are shown in Table 1. Note that the
traditionally regularized APA and NLMS algorithms, deberdl

in the Introduction, can be obtained as special cases ofrthe p
posed algorithms, by choosi®. (t) = oI andR¢ = v1I such
thatov=! = a.

The LMR-APA and LMR-NLMS algorithms are closely related
to the proportionate APA (PAPA) [7] and proportionate NLMS
(PNLMS) [5] algorithms. In the PNLMS RIR weight update,

G(t)u(t)e(t)

f(t):f'(t—1)—|—,uuT(t)G(t)u(t)+a7 (16)
the diagonal matrixG(t) is constructed as follows:
G(1) = = diaglgo(1), ..o (0}, (A7)

—~

g9(t)
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impulse responses of known length» + 1 = 1000, that were
measured in our acoustic lab. The first RIR change occursidrou
t/Ts =1.2- 10° samples, and consists in a change of 75 cm in

Table 1: MSE optimally regularized APA and NLMS algorithms

LMR-APA - Levenberg-Marquardt Regularized APA the microphone position, in such a way that the distancedsstw
the loudspeaker and the microphone remains constant. théer
f(t) — f(t —1)+ MRfU(t)[UT(t)RfU(t) + Rv(t)]*lg(t), second RIR change, aroundl’s = 2.5 - 10° samples, the loud-
T A speaker and microphone positions remain unchanged, but the
e(t) =y - U Of - 1). room is made more reverberant by decreasing the absorpmtion c
efficients of the walls and ceiling. In this simulation, tlze-&nd
LMR-NLMS - Levenberg-Marquardt Regularized NLMS signal is a 46 s male speech signal (equivalenvte= 368320
samples), and the near-end signal is a stationary GWN signal
By = f(t—1)+ Reu(t)e(t) with known variances?> = 3 - 1075, resulting in an echo-to-
u? (H)Reu(t) + o2(t)’ near-end ratio at the microphone ENR= 16 dB.
e(t) = y(t) — uT(t)f(t —1). The reference algorithms are the (unregularized) stardiakdiS

algorithm, the proportionate NLMS algorithm with= 5/ (nr+

1) andé = 0.01 as suggested in [5], and the traditionally reg-
ularized NLMS algorithm as given in (7)-(8) with = o2,
which is further called LMR-NLMSaI. These algorithms are
compared to the proposed LMR-NLNEABW, and LMR-NLMS

with, fork =0,...,np,

gr(t) & max{p . max{(s’ \fo(t -1)),..., |an (t — 1)|}7 Rf,tme algorithms in which the diagonal regularization matrix
. is based respectively on the 3-parameter model from [3]h(wit
| foolt — 1)\}, (18)  d =75 A =0.1022, 7 = 70 and3 = 10~°), and on exact
np knowledge of the first RIR (i.e., a “best-case” scenario).e Th
) & 1 ng(t), (19) regularization matrix is not altered after the two RIR chesg
nrg+1 = such that the robustness of the different regularized dlgos
w.r.t. RIR changes can be evaluated. The stepsigendividu-
wherep ands are small positive parameters. This choic€xf) ally tuned for each of the algorithms such that the excess MSE
was made somewhat intuitively by Duttweiler [5] withthe adfn 3 stationary environment would approximately be the same fo
allocating a larger portion of the available adaptationrgyé¢o all algorithms.
larger adaptive filter weights, to speed up the convergelraer The convergence curves and step sizes are shown in Fig. 2.
on, Chen etal. [6] provided an interpretation of the abov®@  First of all, we observe that the improvement in convergence
of G(¢) in terms of Bayesian priors. speed of the existing PNLMS and LMR-NLM&I algorithms,

The LMR-NLMS algorithm provides an alternative choice for a5 compared to the unregularized NLMS algorithm, is small.
the matrixG(t) in the PNLMS algorithm, which is optimal in A sjgnificantly better convergence behaviour is obtainethwi
the sense of minimizing the criterion in (10). The above com- {he proposed LMR-NLMSR¢ 5 and LMR-NLMS R ¢rue al-
parison of LMR-NLMS with PNLMS can be done similarly for gorithms in the time interva’i/T, = [0,1.2 - 107 éamples,
the LMR-APA and PAPA algorithms. An important difference  yhere the regularization matrix of the proposed algorittisns
with the existing proportionate adaptation algorithmshiattin based on the “correct” RIR. After the first RIR change, the LMR
the proposed LMR-APA and LMR-NLMS algorithms, the reg- - NLMS Ry ¢, algorithm’s performance decreases dramatically,
ularization matrixR¢ is fixed. As a consequence, the proposed whereas the LMR-NLM®s s algorithm converges as fast as
algorithms may respond somewhat slower to a RIR change, butiiiay This is not much of a surprise, since the regutation

on the other hand they are much It_ass computa_tionall_y demgndi matrix Re ¢rue based on the true first F‘QIR, will be a bad model
than the F.)APA and PNLMS al_gorlthms, n Wh'e"(t),'s r‘?ca" for the second RIR covariance matrix, whereas the 3-paexmet
culated with (17)-(19) in each iteration of the adaptivefilt model regularization matriRs s of the first RIR will still be

valid for the second RIR. Indeed, the microphone reposition

4. SIMULATION RESULTS ing does not alter any of the three parameters on whigh is
] ) ) ) based, since the distance between the loudspeaker anddtoe mi
All simulations are done in Matlab at a sampling frequeficy- phone remains constant. However, after the second RIR ehang

8 kHz. The performance measure for comparing the different the parameter in Ry s will have an inaccurate value, since the
algorithms is the misadjustment, which is defined as the Bbrm  rgom reverberation has increased. This clearly affectkhi@-
ized Euclidian distance between the estimated and true RE&R 0 NLMS Rﬂs convergence speed, but still this algorithm outper-

logarithmic scale: forms the other algorithms.

() — £

I (20)

misadjustment (dB)= 20 log, 4.2. Regularized NLMS Algorithms with Prefiltering for

Feedback Cancellation in a Stationary Environment
4.1. Regularized NLMS Algorithms for Acoustic Echo Can-

cellation in a Non-Stationary Environment In a second simulation, the proposed LMR-NLMS algorithm is

applied in a closed-loop scenario for performing adapteedf
In a first simulation, the performance of regularized NLMS al back cancellation. In this case, the near-end signal iswitte
gorithms is compared for acoustic echo cancellation in & non such that prefiltering of the loudspeaker and microphoneadsy
stationary environment. We switch between three differeoin with the inverse near-end signal model is desirable [2]. Tdaa-
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Figure 2: Convergence curves of regularized NLMS algorthm Figure 3: Convergence curves of regularized NLMS algorithm
for an AEC application with two echo path changes. with prefiltering for an AFC application in a stationary emri-
ment.

end signal(t), equal to the same male speech signal as in the . ) )

previous simulation, is added to the feedback signal béfeieg constructed in a proper way, €.g., using a previously pregos
amplified and delayed in the forward path. The resultingaiign ~3-Parameter RIR model.

is sent to the loudspeaker, after which it is filtered in thedfe

back path to yield the feedback signal. An AR(12) model of the 6. REFERENCES
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