
SECOND-ORDER STATISTICS BASED DEREVERBERATION BY USING
NONSTATIONARITY OF SPEECH

Takuya Yoshioka, Takafumi Hikichi, and Masato Miyoshi

{takuya, hikichi, miyo}@cslab.kecl.ntt.co.jp
NTT Communication Science Laboratories, NTT Corporation

2-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan

ABSTRACT

This paper addresses the problem of speech dereverberation, whose
objective is to estimate the inverse filter of an acoustic system
in a room (room transfer function). It is well known that us-
ing a filter that simply whitens an observed signal deteriorates
the characteristics of speech. This is because a speech signal is
temporally correlated due to a speech production system (artic-
ulatory filter). To avoid this problem, we need to estimate the
inverse filter of the room acoustic system separately from that
of the speech production system because it is the former that
we want to estimate. We recently proposed an algorithm that
jointly estimates these inverse filters by exploiting the higher-
order statistics of the output. In this paper, we propose an alter-
native joint estimation based algorithm that uses a criterion in-
volving only the second-order statistics of the output. We present
experimental results indicating that the proposed algorithm can
estimate the inverse filter of the room acoustic system with a
reverberation time of 0.5 seconds from observed signals of 3-5
seconds. Results obtained in the presence of additive noise are
also presented showing that the proposed algorithm succeeds in
the dereverberation under the noise of 20 dB.

1. INTRODUCTION

Room reverberation often degrades the quality of speech.
Hence, speech dereverberation is desired as a preprocess-
ing technique for various speech processing applications.
One may consider the speech dereverberation as blind in-
verse filtering of an acoustic system in a room as follows.
Let a clean speech signal at time n be represented by s(n),
and let the signal transmission channel from the source to
a set of M (≥ 1 in general) microphones be represented
by the Kth-order finite impulse response (FIR) system
H = {h(k)}K

k=0 = {[h1(k), · · · , hM (k)]T }K
k=0, where

superscript T indicates the transposition of a vector or a
matrix 1. For each i, Hi = {hi(k)}K

k=0 forms a subchan-
nel of H corresponding to the signal transmission channel

1For the sake of a simple description, we refer to a set of the sig-
nal transmission channel(s) between a source and possibly multiple mi-
crophone(s) as a signal transmission channel. The channel between the
source and one of the microphones is called as the subchannel. A set of

from the source to the ith microphone. Observed multi-
channel signal x(n) = [x1(n), · · · , xM (n)]T can be de-
scribed as

x(n) =

K
∑

k=0

h(k)s(n − k). (1)

Then, the task of the dereverberation is to recover the
source signal from the observed signal. This is achieved
by convolving an inverse filter of room acoustic system H

with observed signal x(n) as

y(n) =

L
∑

k=0

g(k)T x(n − k), (2)

where G = {g(k)}L
k=0 = {[g1(k), · · · , gM (k)]T }L

k=0 is
the Lth-order FIR inverse filter of H . Therefore, when the
observed signal samples {x(n)}N

n=1 are given, we want to
set up each tap gm(k) of the inverse filter so that the re-
covered signal y(n) is identical to the source signal, s(n),
up to a constant scale and delay.
Speech signal s(n) is produced by an articulatory system,
which is widely modeled as a piecewise autoregressive
(AR) system, driven by an innovations process [1]. In this
model, s(n) is described as

s(n) =

P
∑

k=1

bi(k)s(n−k)+e(n), i =
⌊n − 1

W
+1

⌋

, (3)

where Bi = {bi(k)}P
k=1 denotes a P th-order AR system

of the ith time frame, e(n) denotes the innovations pro-
cess, and W is the frame size within which e(n), and
therefore s(n), can be regarded as stationary. From (1)
and (3), x(n) can be viewed as the output of a composite
system of H and Bi driven by e(n). Our objective is to
obtain the inverse filter of only room acoustic system H .
Therefore, we must identify the inverse filter of H sepa-
rately from that of Bi under the condition that neither the
parameters of H nor that of Bi are available.

signal(s) observed by the microphone(s) is accordingly refered to as an
observed signal.
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Figure 1: Schematic diagram of overall system.

One major approach is to exploit the diversity between
subchannels H1, · · · , HM [2, 3]. However, this approach
appears to be sensitive to observation noise. Other meth-
ods such as [4, 5] may offer some degree of robustness
as regards additive noise. However, they are liable to re-
quire a long observation period. We recently proposed a
method that jointly estimates the inverse filters of H and
Bi [6]. The joint estimation approach is able to provide
each of these inverse filters owing to the time-variant na-
ture of speech production system Bi. It was shown that
the method could estimate the inverse filters with high ac-
curacy from observed signals of 10-20 seconds.
In this paper, we propose an alternative dereverberation al-
gorithm based on the joint estimation approach in order to
further shorten the length of observed signals. The signif-
icant difference between the algorithm proposed here and
that reported previously is that the former uses a criterion
involving the second-order statistics (SOS) of the system
output while the latter exploits the higher-order statistics
(HOS). Since estimation of the SOS demands a smaller
sample size than for estimation of the HOS, the proposed
algorithm will be more efficient in terms of observed sig-
nal length. Our experimental results showed that the pro-
posed algorithm could work with observed signals of at
most five seconds. Moreover, the algorighm is shown to
work well in the presence of additive noise.

2. ESTIMATION PRINCIPLE

In this paper, we assume the following conditions.

1) Innovations {e(n)}N
n=1 consists of zero-mean un-

correlated random variables, where N is the num-
ber of samples.

2) The number, M , of microphones satisfies M ≥ 2
and the order, L, of inverse filter G is sufficiently
large for the truncation effects to be ignored. The
transfer functions of subchannels H1, · · · , HM are
assumed to have no common zero.

3) Speech production system Bi has no time invariant
pole.

The basic idea we proposed in [6] involves the joint esti-
mation of inverse filters of room acoustic system H and

speech production system Bi. Let us consider to filter ob-
served signal x(n) with time-invariant FIR filter G and
then with minimum-phase time-variant FIR filter Ai =
{ai(k)}P

k=1 as shown in Fig. 1. The final output d(n) is
given as

d(n) = y(n)−

P
∑

k=1

ai(k)y(n−k), i =
⌊n − 1

W
+1

⌋

, (4)

where y(n) is calculated by (2). Under assumptions 2) and
3), we can prove that if d(n) is equalized with e(n) except
for the scaling and delay ambiguity and Ai has no time-
invariant zero, then G and Ai become the inverse filters
of H and of Bi, respectively [6]. Therefore, we have to
determine taps gm(k) and ai(k) so that d(n) is equalized
with e(n).

3. PROPOSED ALGORITHM

3.1. Loss function

Based on assumption 1), it would be natural to estimate
gm(k) and ai(k) so that the samples, {d(n)}N

n=1, of the
output signal are uncorrelated. Let K(·) be a suitable mea-
sure of the correlation between random variables. Then,
we would like to minimize K(d(1), · · · , d(N)) with re-
spect to ai(k) and gm(k).
In this paper, we use the measure of correlation proposed
in [7]:

K(d(1), · · · , d(N)) =

N
∑

n=1

log υ(d(n)) − log | det Σ(d)|,

(5)
where d = [d(N), · · · , d(1)]T , υ(·) represents the vari-
ance of a random variable, and Σ(·) represents the covari-
ance matrix of a multivariate random variable. We believe
(5) to be suitable for measuring the degree of correlation
because it always takes nonnegative value and it is equal to
zero if and only if d(1), · · · , d(N) are uncorrelated. Un-
der assumption 2), we can use the framework of multi-
channel linear prediction [8], which means that the first
tap of inverse filter G is fixed as

[g1(0), g2(0), · · · , gM (0)] = [1, 0, · · · , 0] (6)

Then, (5) can be simplified as (see Appendix)

K(d(1), · · · , d(N)) =

N
∑

n=1

log υ(d(n)) + constant. (7)

Therefore, what we are to solve is finally formulated as

minimize
ai(k), gm(k)

N
∑

n=1

log υ(d(n))

subject to Ai is minimum phase. (8)

IWAENC 2006 – PARIS – SEPTEMBER 12-14, 2006 2



Problem (8) says that we just have to minimize the log-
arithmic mean of the variances of d(1), · · · , d(N). The
constraint of (8) is intended to stabilize the estimate, Ai,
of speech production system Bi.
Assume that the variance of d(n) is stationary over a whole
observation period. The loss function of (8) is then re-
duced to N log υ(d(n)). Because the logarithmic function
increases monotonically, the loss function is further sim-
plified to Nυ(d(n)), which may be estimated by

∑N

n=1 d(n)2.
Thus, when the variance of d(n) is stationary, the loss
function of (8) is equivalent to the traditional least squares
(LS) criterion. However, since the variance of the innova-
tions process is globally nonstationary, the loss function
proposed here may be more appropriate. This conjecture
will be validated experimentally.

3.2. Algorithm

We solve the optimization problem (8) by using an alter-
nating variables method [9]. We optimize the loss func-
tion with respect first to the taps ai(k) for a fixed G, then
with respect to the taps gm(k) for fixed A1, · · · , AT−1,
and AT , and so on.
First, let us derive the optimization algorithm with respect
to ai(k). The following two points should be noted:

• Because G is fixed here, y(n) is also fixed.

• Output samples {d(n)}Ni+W−1
n=Ni

in the ith time frame
depend only on {ai(k)}P

k=1, where Ni is the first
sample number of the ith frame.

The optimization is then realized by minimizing the loss
function given as

∑Ni+W−1
n=Ni

log υ(d(n)) from recovered
signal samples {y(n)}Ni+W+1

n=Ni
for each frame number i.

Assume that variance υ(d(n)) changes with sample num-
ber n slowly enough for the variance to be regarded as
stationary within a single frame of size W . Then, the loss
function is equivalent to 〈d(n)2〉Ni+W−1

n=Ni
, where 〈·〉n2

n=n1

represents an operator taking an average from the n1-th
to n2-th samples. Then, the loss function can be mini-
mized by applying linear prediction to {y(n)}Ni+W−1

n=Ni
.

Note that LPC guarantees Ai to be minimum phase when
the autocorrelation method is used [1].
Next, we derive the optimization algorithm with respect
to gm(k). By calculating the derivative of the estimate,
∑T

i=1 log〈d(n)2〉Ni+W−1
n=Ni

, of the loss function, we have
the following algorithm based on the gradient method:

gm(k)′ = gm(k) + δ

T
∑

i=1

〈d(n)vm,i(n − k)〉Ni+W−1
n=Ni

〈d(n)2〉Ni+W−1
n=Ni

(9)

vm,i(n) = xm(n) −

P
∑

k=1

ai(k)xm(n − k), (10)

where δ is step size. Note that we again assumed that the
variance of d(n) changes slowly.

4. EXPERIMENTAL RESULTS

We conducted experiments to evaluate the performance of
the proposed algorithm. Japanese sentences uttered by 10
speakers taken from ASJ-JNAS database were used as the
source signals. The signals were sampled at 8 kHz and
quantized at 16-bit resolution. The observed signals were
simulated by convolving the source signals with impulse
responses measured in a room 4.45 × 3.55 × 2.5 m3 in
size. The distance between the loudspeaker and the mi-
crophones was about 3.2 m. The reverberation time was
around 0.5 seconds.
The following settings were used: M = 4, L = 1000,
W = 200, P = 16. Estimation variables ai(k) and gm(k)
were alternated six times. The update equation (9) was
employed 50 times.
The dereverberation performance was evaluated by using
D50 [10], which is a measure related to speech intelligi-
bility. It is defined as

D50 =

∫ 50 msec.
0

f(t)2dt
∫

∞

0
f(t)2dt

× 100 (%), (11)

where {f(t); t ≥ 0} denotes an impulse response.
In Fig. 2, we plot the D50 score averaged over the 10
speakers’ results as a function of the length of the ob-
served signals. We also plot the performance of the al-
gorithm based on the LS criterion, which assumes the sta-
tionarity of variance υ(d(n)). It can be clearly seen that
the D50 score was recovered well with observed signals
of only 3-5 seconds. By comparing the performance of
the proposed and LS-based algorithms, we can also rec-
ognize the benefit of taking the nonstationarity of variance
υ(d(n)) into consideration.
We also tested the case where the observed signals were
contaminated by additive noise. We used white Gaussian
noise with signal to noise ratios (SNR) of 40, 30, 20, and
10 dB. In Fig. 3, we plot the average D50 score as a func-
tion of SNR. From this result, we can conclude that the
proposed algorithm is robust against additive noise with a
SNR of larger than or equal to 20 dB.

5. CONCLUSION

We have described an alternative speech dereverberation
algorithm based on the joint estimation approach origi-
nally introduced in [6]. The algorithm calculates the in-
verse filters of a room acoustic system and a speech pro-
duction system so that the samples of the output signal are
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Figure 2: D50 as a function of the length of observed sig-
nals.
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Figure 3: D50 obtained in the presence of noise.

uncorrelated. The proposed algorithm shows fast adapt-
ability and robustness against additive noise. This prop-
erty of the algorithm results from the use of a loss function
that can deal with the nonstationarity of signal variance.

6. APPENDIX: DERIVATION

The ñth sample of {d(n)}N
n=1, d(ñ), is represented as a

linear combination of samples {s(n)}ñ
n=1, and the con-

tribution of s(ñ) is
∑M

m=1 hm(0)gm(0). Therefore, d is
written as

d = Fs, (12)

where s = [s(N), · · · , s(1)]T , and F is an N × N up-
per triangular matrix whose diagonal elements are all
∑M

m=1 hm(0)gm(0). From relation (12), we have

log | det Σ(d)| = log | det Σ(s)| + 2 log | det F |. (13)

Since the determinant of an upper triangular matrix is the
product of its diagonal elements, we obtain under (6)

log | det F | = N log
∣

∣

∣

M
∑

m=1

hm(0)gm(0)
∣

∣

∣

= N log |h1(0)| = constant (14)

when condition (6) holds. (13) and (14) leads to

log | det Σ(d)| = constant, (15)

which indicates (7).
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