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ABSTRACT

Inverse filtering of room transfer functions (RTFs) is an attrac-
tive approach for speech dereverberation because high perfor-
mance could be achieved. However, speech signals received at
the microphones may suffer from disturbances such as RTF fluc-
tuations and interfering noise. In such cases, the dereverberation
performance may be severely degraded. In our previous report,
we proposed reducing the energy of the inverse filter to make the
filter less sensitive to RTF fluctuations. This paper evaluates this
design method for the inverse filter in terms of the filter’s sensi-
tivity to additive noise. The experimental results show that the
proposed method is effective in the presence of additive noise,
as well as RTF fluctuations.

1. INTRODUCTION

Speech dereverberation is important for various speech
applications such as hands-free telephony and automatic
speech recognition with distant speakers. Of the exist-
ing dereverberation approaches [1, 2, 3, 4, 5, 6, 7], the
techniques based on the inverse filtering of room transfer
functions (RTFs) appear attractive since high performance
could be achieved [4, 5, 6, 7]. However, these techniques
are affected by disturbances on the received signals. One
cause of the disturbances is the fluctuation in the RTFs
resulting from changes in such factors as source position
and temperature. Another cause of the disturbances is in-
terfering noise.
In [8] we investigated the problem of RTF fluctuations
caused by source position changes, and studied the effect
of the inverse filter design parameters on the dereverbera-
tion performance. As described later, three design param-
eters were adjusted to reduce the filter energy. We showed
that reducing the filter energy makes the inverse filter less
sensitive to RTF fluctuations.
In this paper, we propose using the same strategy to han-
dle disturbance caused by additive noise. Experiments are
carried out to evaluate the effect of the design parame-

ters on the dereverberation performance in the presence
of noise. We also conducted an experiment in which we
combined the disturbances coming from RTF fluctuations
and noise.

2. DEREVERBERATION METHOD AND DESIGN
PARAMETERS

2.1. Dereverberation algorithm

The dereverberation algorithm proposed in [9, 10] is used
in this study. The algorithm is summarized briefly here.
First, RTFs are estimated from the received signals. Then,
the inverse filter is calculated using these RTF estimates
based on the Multiple input/output INverse Theorem (MINT)
[4]. A similar two-stage approach has also been used in
[5, 11, 12].

It is difficult to estimate the RTFs from noisy and reverber-
ant speech signals. Although this issue has been tackled
recently [13], it is still an open problem. Moreover, even if
we could remove the effect of noise, when the RTF order
is overestimated, the estimates contain a common polyno-
mial between the channels as well as the true RTFs. In
[9, 10], we proposed the use of post-processing to remove
the effect of this common polynomial. In this paper, how-
ever, as we are focusing on the design of inverse filters,
we assume that the RTFs could be estimated with suffi-
cient accuracy.

Using the RTF estimates, we can obtain an inverse filter
by solving the following equation,

Hg = v, (1)

where

H = [H1, · · · ,HP ] ,
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M

(J + M),

i = 1, · · · , P,

g = [g1(1), . . . , g1(M), · · · , gP (1), . . . , gP (M)︸ ︷︷ ︸
PM

]T ,

v = [0, . . . , 0︸ ︷︷ ︸
d

, 1, 0, . . . , 0]T ,

P is the number of channels, hi(n) is the impulse re-
sponse estimate between the source and the i-th micro-
phone, J is the number of taps of the impulse response es-
timates, g is the inverse filter vector, M is the filter length
for each channel, and d is a modeling delay. An arbitrary
delay can be inserted in the equalized response by setting
d (d ≥ 0). Matrix H is full row rank assuming the RTFs
have no commmon zeros. Hereafter, we consider that the
impulse response estimates are normalized by their norm.
The inverse filter vector can be obtained by

g = H+v, (2)

where A+ is the Moore-Penrose pseudo inverse of matrix
A. An inverse filter with the minimum length is calculated
by setting M so that matrix H is square, i.e., (J + M) =
PM , which leads to M = J/(P − 1). Note that the filter
length can also be set at M > J/(P − 1).
By applying the inverse filter to the observed signals, a
dereverberated signal is obtained.

2.2. Design parameters

Here, we briefly explain the three design parameters, namely,
the regularization parameter, filter length, and modeling
delay, and their influence on the inverse filter. We can ex-
pect these parameters to be effective in reducing the filter
energy and hence increasing the robustness against distur-
bances in the room soundfield. A more detailed analysis
of the effect of the design parameters on the filter energy
can be found in [8].

2.2.1. Regularization parameter δ

The use of a regularization parameter in the design of the
inverse filter leads to the following expression for the in-
verse filter vector,

gr = (HT H + δI)−1HTv, (3)

where δ(≥ 0) is the regularization parameter, and I is an
identity matrix. The l2-norm of this filter vector satisfies
the following relation [8],

||gr||2 ≤ ||g||2. (4)

That is, the regularization parameter δ has the effect of re-
ducing the norm of the inverse filter, and this is believed to
reduce the sensitivity to noise. On the other hand, the reg-
ularization parameter reduces the accuracy of the inverse
filter, and a compromise should be adopted. It should be
noted that the filter expressed as Eq. (3) gives the opti-
mum solution when the RTFs show random fluctuations
with variance δ.

2.2.2. Filter length M

Equation (3) will give the minimum norm filter for a given
length M . Consequently, by increasing filter length M ,
we can expect to find a filter with the smallest norm among
all possible filters.

2.2.3. Modeling delay d

Modeling delay d (d > 0) is inserted to compensate for the
maximum phase component of the RTFs and to stabilize
the inverse filter. Hence, we expect the filter norm to be
reduced by choosing an appropriate delay.

3. EXPERIMENTS

Simulations were used to investigate the sensitivity of the
inverse filter to the additive noise included in the observed
signals. Figure 1 shows the arrangement of the source and
microphones used in the experiment. Room impulse re-
sponses between the source and the microphones are sim-
ulated by using the image method [14]. The impulse re-
sponses are truncated to 1600 samples (J = 1599), corre-
sponding to −60 dB attenuation. The sampling frequency
is set at 8 kHz, then the duration of the impulse responses
is 200 msec. The experimental conditions used in this
study are the same as those used in our previous study
[8].
Reverberant speech signals are simulated by convolving
the original speech with the room impulse responses. Then,
signals observed at the microphones are simulated by adding
white noise with an SNR of 40 dB. These observed signals
are filtered with the inverse filter calculated by Eq. (3)
to obtain the dereverberated speech signal. Experiments
were undertaken using several microphone pairs (P=2)
made up from the four microphones, for example (M1,
M2), (M2, M3). Due to the space limitation, we only show
the results for the microphone pair (M3, M4). However,
a similar tendency was observed for the other microphone
pairs.
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Figure 1: Arrangement of the source and microphones.
M1, M2, M3 and M4 denote the microphones.
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Figure 2: Performance as a function of additional filter
length M ′ and modeling delay d. Regularization parame-
ter was set at δ = 0.

The dereverberation performance is evaluated by using the
signal-to-deviation ratio (SDR) defined as

SDR = 10 log10

( ∑N
n=0 s2(n)∑N

n=0(s(n)− ŝ(n))2

)
, (5)

where s(n) and ŝ(n) are the original and the dereverber-
ated speech signals, respectively.
Figure 2 shows the performance of the inverse filter de-
signed with various filter lengths M (= J + M ′, M ′: ad-
ditional filter length) and modeling delay d. When the
minimum filter length was used (M ′=0), the performance
was strongly dependent on the delay. By contrast, when a
larger filter length was used (i.e. M ′ = 500), better and
more stable performance was obtained. We investigated
the filter energy and confirmed that it is inversely propor-
tional to the performance.
In the second experiment, the modeling delay was fixed at
d = 200, and the effects of filter length M and the regu-
larization parameter δ were investigated. Figure 3 shows
the performance in this case. The best performance was
obtained with δ = 10−4. Hereafter, the regularization
parameter value that provided the best performance is re-
ferred to as the best value. The best value corresponds

0

100

200

300

400

500

1e−10
1e−8

1e−6
1e−4

1e−2

10

15

20

25

30

35

Add. length
Reg. parameter

S
D

R
 [d

B
]

Figure 3: Performance as a function of additional filter
length M ′ and regularization parameter δ. Modeling de-
lay was set at d=200.

with the SNR level (40 dB). The dependence on filter
length becomes small when the best parameter value is
used. It should be noted that, although the filter energy
decreases with increases in δ, too large a δ value, such as
δ ≥ 10−2 also degrades the dereverberation performance.

In the third experiment, we evaluated the performance for
several SNRs by using modeling delay d = 200 and min-
imum filter length M = J . Figure 4 shows the results
for SNR = 10, 20, 30, and 40 dB. When the SNR is high,
the best value of the regularization parameter corresponds
well with the SNR level. In contrast, when the SNR is low,
the performance curve becomes broad, and the correspon-
dence becomes less obvious. Note that the performance
is bounded by the SNR level, since no noise reduction is
employed.

Figure 5 shows the performance as a function of the regu-
larization parameter when there were RTF fluctuations re-
sulting from source position changes. Here, we consider
new source positions and apply the inverse filter to each of
the corresponding reverberant speech signals. SDR values
calculated by Eq. (5) are averaged over the new positions
to obtain the overall performance. We evaluated the per-
formance for position changes of 2, 4, 6 and 8 cm. Figures
4 and 5 exhibit similar trends. However, the performance
is less sensitive to the best value of the regularization pa-
rameter than when noise is present.

Figure 6 shows the performance when both the RTF fluc-
tuation and the noise are present simultaneously. The re-
sults for ‘noise only’ and ‘fluctuation only’ cases are also
plotted in the same figure. In terms of the performance at
δ = 10−3, the difference between ‘noise only’ and ‘fluc-
tuation only’ is about 2 dB. The performance worsens by
about 4 dB from ‘noise only’ to ‘noise+fluctuation’. These
results are plausible if the noise induced distortion has no
correlation with the distortion caused by the RTF fluctua-
tion.

IWAENC 2006 – PARIS – SEPTEMBER 12-14, 2006 3



1e−10 1e−6 1e−4 1e−3 1e−2 1e−1
0

5

10

15

20

25

30

35

Reg. parameter

S
D

R
 [d

B
]

10 dB
20 dB
30 dB
40 dB

Figure 4: Performance as a function of regularization pa-
rameter for SNR values of 10, 20, 30, and 40 dB.
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Figure 5: Performance as a function of regularization pa-
rameter for position variation of 2, 4, 6, and 8 cm.

4. SUMMARY

To achieve dereverberation in a noisy environment, we
evaluated the inverse filter design method in terms of the
filter’s sensitivity to additive noise. The results showed
that the dereverberation performance could be improved
by properly adjusting the filter design parameters, which
led to a reduction of the filter energy. Consequently, this
approach was shown to be effective for additive noise, as
well as for RTF fluctuation, as reported in [8].
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