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ABSTRACT

Subspace methods for blind SIMO system identification

have been proposed which rely on the null subspace of the

data correlation matrix to estimate the impulse response

coefficients. It is known that the performance of these

algorithms degrades with increasing noise and large sys-

tem orders. In this paper, we present results of an exper-

imental study that links the performance of the subspace

algorithm with the eigenvalues of the multichannel input

correlation matrix. It is demonstrated that the eigenvec-

tor corresponding to the smallest eigenvalue is not always

the best solution neither in terms of normalised projection

misalignment nor cross-relation error.

1. INTRODUCTION

Blind SIMO system identification is a commonly occur-

ring problem with several applications in various fields of

engineering and in particular where blind deconvolution

or source separation is required. Example areas of appli-

cation include communications where the received signal

must be equalised to obtain the transmitted signal, geo-

physics where the reflectivity of the earth layers is ex-

plored by extracting seismic signals from the sensor obser-

vations [1] and reverberant speech enhancement where the

aim is to estimate the acoustic impulse responses blindly

from reverberant observations, and then deconvolve to re-

move the effects of the room [2].

Algorithms for blind identification of SIMO systems

based on the cross-relation between two channels have re-

ceived a great deal of attention in the literature with var-

ious different implementations [1, 2, 3, 4, 5, 6]. How-

ever, all these algorithms in common suffer from several

problems which need to be overcome before they can by

applied in practice. These problems include presence of

common zeros in the channel transfer functions [7, 8], un-

known channel orders, difficulty in handling long impulse

responses and sensitivity to additive noise [9].

In this paper, we investigate the effects of noise by

monitoring the eigenvalues of the correlation matrix. This

investigation focuses on the cross-relation error mea-

sure and the normalised projection misalignment, both of

which are standard measures in this context and will be

defined in Section 4. It is demonstrated that, in the pres-

ence of noise, both these measures may be minimised by

subspace vectors that do not necessarily correspond to the

smallest eigenvalue of the correlation matrix.

The remainder of the paper is organised as follows.

In Section 2 the problem of blind system identification is

formulated and the eigenvalue decomposition algorithm

is reviewed in Section 3. The rationale and the motiva-

tion for the experiments are described in Section 4. The

simulation results are presented in Section 5 followed by

conclusions in Section 6.

2. PROBLEM FORMULATION

Consider a signal, s(n), produced in a noisy multipath en-

vironment and observed by an array of sensors at a dis-

tance from the source. The signal received at the mth sen-

sors can be written

ym(n) = hT
ms(n), (1)

xm(n) = ym(n) + νm(n), (2)

where hm = [hm,0 hm,1 . . . hm,L−1]
T is the L-tap im-

pulse response of the acoustic path between the source and

the mth microphone, s(n) = [s(n) s(n − 1) . . . s(n −
L + 1)]T is an input vector of source samples and νm(n)
is ambient noise. The aim of a blind channel identifi-

cation algorithm is to form an estimate, ĥm, of the im-

pulse responses, hm, using only the noisy observations

xm(n), m = 1, 2, . . . , M . This has been shown possible

if the following identifiability conditions are satisfied [3]:

(i) the channels do not share any common zeros and (ii)

the autocorrelation matrix of the source signal is of full

rank.

3. EIGENDECOMPOSITION BLIND SIMO

SYSTEM IDENTIFICATION

In this section, the eigendecomposition method for blind

system identification presented in, e.g. [2] is summarised.
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For the work presented in this paper we consider the sim-

plest multichannel case, M = 2, for tractability. The

concepts are straightforwardly extended to the general M -

channel case. In a noise-free scenario, the following cross

relation between the channels and the observed signals

holds [3, 2]

hT
1
y2(n) = hT

2
y1(n), (3)

where ym(n) = [ym(n) ym(n− 1) . . . ym(n−L+ 1)]T

is a vector of observation samples at the mth sensor.

A two-channel data matrix may be constructed as

Y =

[

Y2

−Y1

]

(4)

and consequently, the multichannel correlation matrix can

be written

R =
1

N + 1
YYT . (5)

Thus, in terms of this correlation matrix the following

system of equations is formulated

Rh = 0, (6)

where h = [hT
1

hT
2
]T is a vector with concatenated chan-

nel impulse responses.

From (6) it is seen that the channel vector is a vector

in the null subspace of R which can be found using eigen-

value decomposition (EVD). It was shown in [4] that the

rank of the null subspace is, p̂h−ph +1 where p̂h ≥ ph is

an estimated value of the channel order. The eigenvalues

can be sorted in the following manner

{

λl = 0, l = 0, 1, . . . , p̂h − ph

λl > 0, otherwise
(7)

The true order can be found from (7), provided that

the null subspace is correctly identified. For the remain-

der of this work, we will assume that L is known. The

corresponding eigenvectors of the null subspace provide

the coefficients of the impulse response up to an arbitrary

scaling factor. By assuming white noise conditions, the

null subspace of (5) will have a value equal to the noise

power rather than zero.

4. STUDY DESCRIPTION AND RATIONALE

We now describe and motivate the experimental study

conducted for this paper. In the absence of noise, the al-

gorithm is capable of estimating the channel transfer func-

tions accurately. In contrast, previous studies have shown

that the performance of the algorithm degrades with in-

creasing noise levels [5, 2, 9]. In particular, at a lower

SNR value of 20 dB, the NPM is very large and the sub-

space method cannot correctly identify the impulse re-

sponses. Noise may also effect the impulse response and

can cause common zeroes amongst the channels, which

reduces the accuracy of the algorithm. In addition, for in-

creasing channel orders, the performance also decreases

as the algorithm is sensitive to errors in the EVD and

cannot find channel coefficients accurately. A better un-

derstanding of the underlying cause of such degradations

would prove beneficial for improvement of the algorithms.

In this experimental study, we investigate the distribu-

tion of the eigenvalues of the correlation matrix and how

this is affected by noise. We form a histogram using 10

uniform bins over the range of eigenvalues. The values

obtained from the first bin of the distribution are studied

since the true channels are obtained from the null subspace

eigenvalues or the smallest eigenvalues.

Two standard measures of performance are considered

for the experiment. First, the normalised projection mis-

alignment (NPM), defined as [10]

NPM = 20 log
10

(

‖h− βĥ‖

‖h‖

)

dB, (8)

with

β =
hT ĥ

ĥT ĥ
, (9)

where ĥ is the estimate of the concatenated impulse re-

sponses h. The projection of h onto the estimated chan-

nel, ĥ, will take into account the intrinsic misalignment of

the channel estimate, disregarding the arbitrary gain fac-

tor. Next, in the presence of noise, the cross-relation error

between two channels is defined [5]

e(n) = ĥT
1
y2(n)− ĥT

2
y1(n). (10)

The relation of (10) can be written for each pair of chan-

nels when M > 2. According to theory, the transfer func-

tion coefficients corresponding to the null subspace will

satisfy (10), such that the mean squared error is a mini-

mum. For each eigenvalue from the first bin of the dis-

tribution, we use the corresponding eigenvectors to cal-

culate the cross-relation error and NPM. The expected

outcome is that the lowest NPM and cross-relation error

would be obtained from the eigenvectors corresponding

to the smallest eigenvalue.

5. SIMULATION RESULTS

In this section, we present and discuss the results from the

simulations. We compare the noise-free case with a noisy

case with SNR = 10 dB.

In the first set of experiments a two channel system

was considered with L = 128 taps. Figure. 1 shows the

results for the noise free case in terms of (a) NPM, (b)

cross-relation error and (c) the eigenvalues of the first bin.

As expected, the NPM in Fig. 1a has a value indicating
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Figure 1: Experimental results for the noise-free case

(SNR = ∞ dB) with random channels of length L = 128
in terms of (a) NPM, (b) Cross-relation error e(n) and (c)

correlation matrix eigenvalues.

exact identification for the first eigenvalue; whereas it is

zero for other the other eigenvalues in the bin. The corre-

sponding cross-relation error of (10) is also minimised for

this eigenvalue and the error then increases linearly with

increasing eigenvalues. On the contrary, for the noisy case

it is shown that the NPM in Fig. 2a and the cross-relation

error Fig. 2b are minimised by eigenvectors that do not

correspond to the smallest eigenvalue where the error due

to the smallest eignevalue is indicated with a dotted line

in Fig. 2b. Furthermore, the cross-relation error and the

NPM have their minima at different values.

Apart from the minimum error indicated with a circle,

there are several other error values that lie below this line.

This indicates that the best solution may not always come

from the smallest eigenvalue. By comparing the plots of

the eigenvalues in the first bin of the histogram, it is no-

ticeable that the first fifteen eigenvalues are much smaller

in the noiseless case than in the noisy case. These re-

sult can vary between experiments and we have observed

some cases for which the minimum error and the min-

imum NPM may correspond to the smallest eigenvalue.

The effect of noise may have been to introduce common

zeros by shifting near-common zeros closer together. In

order to avoid this effect we conducted a second set of

experiments using shorter impulse responses and making

sure that there are no common or near common zeros. The

zeros of the two random channels of length L = 16 used

are depicted in Fig. 3.

The results of this second experiment are presented in

Figure 4 in terms of (a) NPM, (b) cross-relation error and

(c) eigenvalues. Again, it is observed that the NPM and

cross-relation error are not obtained with the eigenvector
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Figure 2: Experimental results for the noisy case (SNR =
10 dB) with random channels of length L = 128 in terms

of (a) NPM, (b) Cross-relation error e(n) and (c) correla-

tion matrix eigenvalues.
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Figure 3: Channel zeros for a two channel system with

random impulse responses of length L = 16.

corresponding to the smallest eigenvalue. Instead, the sec-

ond eigenvector of the bin provides the lowest NPM, while

the fourth eigenvector provides the smallest cross-relation

error.

The results presented in this section raise interesting

issues in relation to the adaptive methods of blind channel

identification which are based on iterative minimisation of

the cross relation error. The results of this study may be

the initial steps to the explanation of the observed prob-

lems with misconvergence [9, 11] of the algorithms in the

presence of noise.
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Figure 4: Experimental results for the noisy case (SNR =
10 dB) with random channels of length L = 16 in terms of

(a) NPM, (b) Cross-relation error e(n) and (c) correlation

matrix eigenvalues.

6. CONCLUSION

The subspace methods for blind channel identification and

its performance in the presence of noise have been dis-

cussed. An experimental study was presented where the

eigenvalues of the correlation matrix of a two channel

SIMO system correlation matrix were observed and com-

pared for a noise-free and a noisy case. The distribution of

the eigenvalues was considered and those in the first bin of

a histogram were chosen for experimental study. Conse-

quently, the normalised projection misalignment and the

cross-relation error were calculated for each eigenvector

corresponding to an eigenvalue of the first bin. It was

demonstrated that the smallest eigenvalue does not nec-

essarily minimise the NPM nor the cross-relation error.

This experimental study therefore provides some insight

into the noise robustness of the subspace-based approach.

This encourages future work on this topic which

would involve a more detailed study of the effect of noise

on the roots of the system transfer function and enhance-

ment of the subspace algorithm to determine a better esti-

mate of the coefficients.
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