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ABSTRACT

The aim of this paper is to investigate the use of multi-
resolution framework for single sensor source separation
based on pseudo-Wiener filtering. We propose a scheme
in which the signal is iteratively split in target sources and
a residual. Each target source is modeled as the sum of
elementary components with known Power Spectral Den-
sities (PSDs). The approach boils down to perform a non
negative decomposition of the spectra of the observed si-
gnal in a given frame onto the dictionnary of known PSDs.
The resolution of the PSDs (and hence the frame length) is
changed at each iteration of the algorithm. The decompo-
sition into sources plus residual is done thanks to a confi-
dence measure based on the Fisher information matrix of
the expansion coefficients. After theoretical developments
we compare the mono and multiresolution approaches and
a set of audio examples.

1. INTRODUCTION

In [1] we proposed a generalization of the well-known
Wiener filter [2] to locally stationary audio sources. The
analysis is done in the time-frequency plane through the
Short Term Fourier Transform (STFT) of the signals. In
this domain, we have defined the notion of an elementary
source Ss(k)(t, f) =

√
ak(t) · Sbk(t, f), where S is the

STFT operator, ak(t) is a non negative amplitude para-
meter and Sbk(·, f) is a zero mean, stationary, Gaussian
process with diagonal covariance matrix Σk = {σ2

k(f)}f .
The amplitude parameter can either be seen as a tempo-
ral envelope parameter or a activation parameter. We de-
fine a composite source as the sum of independent ele-
mentary sources over a set of indices Ki : Ssi(t, f) =∑

k∈Ki

√
ak(t) · Sbk(t, f).

The resulting separation algorithm (in a Bayesian frame-
work) consists of two steps :

1. Compute the amplitude parameters {ak(t)} in a Maxi-
mum Likelihood sense, for all frame indices t.

2. Filter the original mixture according to the resulting
adaptive Wiener filters.

In this paper, we propose an improvement of this algo-
rithm using a multiresolution STFT scheme. The basic
idea is to decompose, in an iterative fashion, the observed
signal into source components and a residual for several
window lengths. At each iteration the residual contains
components that are not properly represented at the cur-
rent resolution. The input signal at iteration i is then the
residual generated at iteration i − 1. The algorithm starts
with a long window sizes wich is decreased throughout
the iterations.
The paper is organized as follows. In Section 2 we recall
the general framework of the monoresolution algorithm
presented in [3]. In Section 3 we explain in details the
new approach with a special emphasis on the choice of
the confidence measure. This measure is used to select a
subset of each set Ki that corresponds to accuratly estima-
ted amplitude parameters. In Section 4 we present results
obtained on a mixture a music and voice. Conclusions and
perspectives are given in section 5.

2. OVERVIEW OF THE CLASSICAL
ALGORITHM

2.1. Notations

We note S the STFT operator and Sx(t, f) is the STFT
of x(n), where n is the discrete time domain index, t and
f are respectively the discrete frame index and frequency
bin. We have the following observation equation

Sx(t, f) = Ss1(t, f) + Ss2(t, f),

where x is the observed mixture and s1, s2 are the unk-
nown sources. Note that we restrict ourselves here to two
sources although the generalization to more than two sources
is theoretically straightforward and has been successfully
tested.
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2.2. Learning the PSDs sets

We assume that we have some clean training samples of
each source. These training excerpts do not need to be
identical to the source contained in the observed mixture
but we assume that they are “representative” of the source.
For example we might learn elementary drums PSDs on a
range of drums solos. From these training samples, we es-
timate the covariance matrices (or PSDs set) {σ2

k(f)}k∈Ki

for each source si. We may use, for instance, a vector
quantization algorithm on the short term Fourier spectra
of the excerpts in order to build the PSDs set.

2.3. Amplitude parameters estimation

Conditionally upon the amplitude parameters {ak(t)}k,
all the elementary sources Ss(k)(t, f) are (independent)
zero mean Gaussian processes with variance {ak(t)σ2

k(f)}.
Then the observed mixture is also a zero mean Gaussian
process with variance {

∑
k ak(t)σ2

k(f)}. Therefore we have
the following log-likelihood equation :

log p(Sx(t, f)|{ak(t)}) = −1

2

∑
f

[
|Sx(t, f)|2

en(f, t)
+ log(en(f, t))

]
where en(f, t) =

∑
k∈K1∪K2

ak(t)σ2
k(f). We can es-

timate the amplitude parameters {ak(t)}k by setting the
first derivative of the log-likelihood to zero under a non
negativity contraint. As this problem has no analytic solu-
tion, we use an iterative, fixed point algorithm with multi-
plicative updates [4, 5, 3], yielding

a
(l+1)
k (t) = a

(l)
k (t) ·

∑
f σ2

k(f) · |Sx(f,t)|2
en(l)(f,t)2∑

f σ2
k(f) · 1

en(l)(f,t)

,

where en(l)(f, t) =
∑

k a
(l)
k (t)σ2

k(f).

2.4. Sources estimation

Conditionally upon the estimated amplitude parameters
{ak(t)}k, sources estimates are obtained through a gene-
ralized Wiener formula :

Ŝsi(t, f) =

∑
k∈Ki

ak(t)σ2
k(f)∑

k∈K1∪K2
ak(t)σ2

k(f)
Sx(t, f).

Note that this estimator is equivalent to the MAP estima-
tor under Gaussian assumptions.

3. THE MULTIRESOLUTION APPROACH

3.1. Notations

We suppose that w1(n), . . . , wN (n) are N windows with
decreasing support length. We note Swi the STFT operator
with analysis window wi(n).

3.2. General description of the algorithm

We first basically apply the algorithm of Section 2 with
the longest window w1(n). This algorithm is slightly mo-
dified as to yield a residual signal, such that

Sw1x(t, f) = Sw1s1,w1(t, f) + Sw1s2,w1(t, f) + Sw1rw1(t, f).

After inverse-STFT, we iterate on r1(n) with analysis
window w2. At the end of the day, the decomposition at
iteration i is

Swirwi−1(t, f) = Swis1,wi(t, f) + Swis2,wi(t, f) + Swirwi(t, f).

While no residual is computed with the monoresolution
approach, the multiresolution approach involves the selec-
tion of a set of PSDs with their associated amplitude para-
meters. This is done through a partition of the amplitude
parameters indices k ∈ K1 ∪ K2 into three different sets
Q1(t), Q2(t) and R(t). The set R(t) contains the indices
k such that the corresponding {ak(t)}k∈R(t) are “unrelia-
bly” estimated and the set Q1(t) (resp. Q2(t)) contains the
indices k ∈ K1 (rep. k ∈ K2) of reliably estimated ak(t).
At each step, sources and residual are estimated with :

Ŝs1,wi(t, f) =

∑
k∈Q1(t)

ak(t)σ2
k(f)

en(t, f)
Srwi−1(t, f)

Ŝs2,wi(t, f) =

∑
k∈Q2(t)

ak(t)σ2
k(f)

en(t, f)
Srwi−1(t, f)

Ŝrwi(t, f) =

∑
k∈R(t) ak(t)σ2

k(f)

en(t, f)
Srwi−1(t, f)

with Srw0(t, f) = Sx(t, f)

Q1(t), Q2(t) and R(t) are obtained through the computa-
tion of a confidence measure Jk(t). This confidence mea-
sure should be small if the corresponding estimate of ak(t)
is accurate. As will be seen in Section 3.3, the confidence
measure that we have chosen is related to the Fisher infor-
mation matrix of the likelihood of the amplitude parame-
ters.
Note that these three sets of indices Q1(t), Q2(t) and R(t)
are frame dependent. Relying on a similar filtering for-
mula than those used in the classical algorithm, we get
three estimates ŝ1,wi(n), ŝ2,wi(n) and r̂wi(n) (back in the
time domain). Then we can iterate on r̂wi(n) with a dif-
ferent STFT window wi+1(n).
Finally, we get the estimates :

ŝ1(t) =
N∑

i=1

ŝ1,wi(t)

ŝ2(t) =
N∑

i=1

ŝ2,wi(t)

r̂(t) = r̂wN
(t).
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We this algorithm we expect that short components such
as transients will be unreliably estimated with long ana-
lysis windows and therefore will fall in the residual untill
the window length is sufficiently small to capture them
reliably.

3.3. Choice of a confidence measure

Suppose we have a confidence interval on each amplitude
parameter ak(t) : ak(t) ∈ [âk(t) − lk(t); âk(t) + Lk(t)].
Then the quantity Jk(t) = Lk(t)−lk(t)

âk(t) can be seen as
a relative confidence measure on the estimate âk(t). If
Jk(t) ≤ λ where λ is a experimentally tuned threshold,
we consider that the estimation of ak(t) at frame index t
is reliable. Using a Taylor expansion of the opposite log-
likelihood around the ML estimate, we get

− log p(rwi |{âk(t) + δak(t)}k)

≈ − log p(rwi |{âk(t)}k) +
1
2
[δak(t)]T H(t)[δak(t)],

where Hi,j(t) = − ∂2

∂ai(t)∂aj(t)
log p(rwi

|{âk(t)}k). Then
taking the expectation on both sides of the equality, we get

E

(
log

p(rwi |{ak(t)})
p(rwi |{ak(t) + δak(t)}) |{ak(t)}

)
≈ 1

2
[δak(t)]T I(t)[δak(t)],

where the left side of the equality is simply the Kullback-
Leiber divergence and I(t) is the Fisher information ma-
trix for ak(t) = âk(t). This relationship is well known
and is also true if {ak(t)}k is not a local optimum [6]. For
a given admissible error E on the Kullback-Leiber diver-
gence, we get

|δak(t)| ≤
√

2E ·
√

[I−1(t)]k,k,

thus yielding a confidence iterval on ak(t) for a given ad-
missible error E on the objective function.
Note that we see here that the sensitivity of the estima-
ted parameters to a small change of the objective function
(here, the opposite log-likelihood) or a mis-specification
of the objective function is related to the inverse of the
Fisher information matrix. In our model, the Fisher infor-
mation matrix is Ii,j(t) = 1

2

∑
f

σ2
i (f)σ2

j (f)

en(f,t)2 . We have to
take the inverse of I(t) for all t and we get

Jk(t) =

√
[I−1(t)]k,k

âk(t)
.

3.4. Practical choice of the thresholds

As we said before it is possible to tune the thresholds in
an experimental way. A way to circonvent this problem is

to sort the confidence measures Jk(t) for each fixed frame
index t. Then we can either keep the M more reliable esti-
mates for each frame, all the other k indices beeing used to
build the residual. Conversely, another way to proceed is
to build the residual set R(t) by taking the less reliable in-
dices such that

∑
k∈R(t) ak(t) < ε

∑
k∈K1,wi

∪K2,wi
ak(t),

for a given ε ∈ [0, 1]. Indeed, the first sum is the estima-
ted variance of the residual rwi

while the second sum is
the estimated variance of the overall decomposition rwi−1 ,
for each frame. Then after N iterations, we are garanteed
that the residual variance is (approximately) lower that εN

times the original signal variance.

4. EXPERIMENTAL STUDY

4.1. Experimental protocol

The evaluation task consists in unmixing a voice plus jazz
music audio track. All the audio excerpts are sampled at
16kHz. We make a 15 seconds long linear mix of a male
voice in French and an excerpt of a jazz piece with 0dB Si-
gnal to Noise Ratio (SNR). The voice excerpt has been re-
corded in good environmental conditions. The voice PSDs
are trained on a set of about 50 short excerpts of various
male speakers. The jazz piece is an excerpt of The four
seasons by the Jacques Loussier Trio. The excerpt contains
piano, bass and drums. We were given training data for
each instrument. Using a Vector Quantization algorithm
(VQ), the training step had to be done for each window
size, namely 64, 16 and 8 ms. We obtain respectively :
– 83, 113 and 180 PSDs for the piano,
– 56, 81 and 89 PSDs for the bass,
– 9, 30 and 59 PSDs for the drums,
– 289, 369 and 453 PSDs for the speech model.

4.2. Evaluation criteria

The criteria we use for the separation performance is des-
cribed in [7]. Basically, the SDR (Source to Distortion Ra-
tio) provides an overall separation performance criterion,
the SIR (Source to Interference Ratio) measures the level
of the interferences from other sources in each source es-
timate and the SAR (Signal to Artifacts Ratio) measures
the level of artifacts in the source estimates. The higher
are the ratios, the better is the quality of the estimation.

4.3. Evaluation

In this section, we present the SDR, SIR and SAR re-
sults on three different configurations, for both instrumen-
tal and speech parts. The first configuration is the standard
pseudo-Wiener algorithm with a single STFT window of
length 16 ms. The second configuration uses the modi-
fied algorithm with two STFT windows of size 64 and
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8 ms. Finally, the third configuration uses three windows
of length 64, 16 and 8 ms. For both multi-resolution ap-
proaches, we select at each step the M = 5 most reliable
estimates of the amplituds factor coefficients.

SNR = 0 dB
instrument SDR SIR SAR

1 STFT window
music 3.8 6.1 8.6
voice -1.9 5.1 0.1

2 STFT windows
music 4.2 6.8 8.6
voice -2.3 10.1 -1.7

3 STFT windows
music 4.2 7.4 7.7
voice -2.3 9.7 -1.0

TAB. 1 – SDR,SIR and SAR for the different methods
using a 0 dB SNR mix

As can be seen on Table 1, the SDR is slightly improved
with the new method on the music part (around 0.4 dB)
but the improvement is not clear in the speech component
case. Moreover, the figures are very similar with two and
three windows. The small improvement in the SDR for the
music component when we use more than one STFT win-
dow is confirmed by the SIR and SAR scores. The case of
the speech is different. Indeed, we have an improvement
of 5 dB in SIR from one window to two windows. This im-
proved SIR is done at the cost of a lower SAR. However,
we have listened to the separated speech components with
the one and two STFT windows methods, and we have no-
ticed that the intelligibility of the speech is improved with
the new method, although the SAR decreases.

4.4. Discussion

In order to understand the practical problem we had to
deal with, it should be noticed that in many cases, the lo-
cal energy of the mixture is spread over just a few ampli-
tude parameters (usually no more than 4 ak(t) per frame,
among several hundreds of them). Therefore splitting the
signal in source components and a residual component is
a rather difficult task. A way to avoid this phenomenon,
would be to add, in future work, a prior density on each
amplitude parameter. Our approach introduces new para-
meters (namely M and ε) that we need to tune. Futur effort
to enhance this approach will consist in automatically set
these parameters.

5. CONCLUSION

We have proposed a new single sensor audio source se-
paration method based on a previous pseudo-Wiener me-

thod and multiple STFT windows. We believe this contri-
bution is important as it allows to analyse sound events
at different time scales and thus to enhance the separation
performance. It is a difficult task that is addressed here
as we deal with superimposed audio events with different
scales. A few perspectives can ben mentionned. First, we
could replace the iterative STFT scheme with a hierarchi-
cal multi-window analysis, as it is done with local cosine
packet. Second, we can use prior densities on the ampli-
tude parameters in order to estimate the residual signal
more easily. Finally, this algorithm could be used to get a
multiresolution segmentation of a composite audio signal.
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