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ABSTRACT

In this paper, we analyze the performance of cross-band adapt-
ation in the short-time Fourier transform (STFT) domain for the
application of acoustic echo cancellation. The band-to-band �l-
ters and the cross-band �lters considered in each frequency-band
are all estimated by adaptive �lters, which are updated by the
LMS algorithm. We derive explicit expressions for the transi-
ent and steady-state mean-square error (MSE) in subbands for
both correlated and white Gaussian processes. The theoretical
analysis is supported by experimental results.

1. INTRODUCTION

Subband acoustic echo cancellation systems generally re-
quire adaptive cross-band �lters for the identi�cation of
time-varying echo path [1]. Recently, we investigated the
in�uence of cross-band �lters on the performance of an
acoustic echo canceller implemented in the STFT domain,
and analyzed the steady-state mean-square error (MSE) in
subbands [2]. We derived explicit relations between the
cross-band �lters in the STFT domain and the impulse re-
sponse in the time domain. It has been shown that in order
to capture most of the energy of the STFT representation
of the time domain impulse response, relatively few cross-
band �lters need to be considered.
In this paper, we analyze the convergence of a direct ad-
aptive algorithm used for the adaptation of the cross-band
�lters in the STFT domain. The band-to-band �lters and
the cross-band �lters considered in a given frequency-
band are all estimated by adaptive �lters, which are up-
dated by the LMS algorithm. Explicit expressions for the
transient and steady-state MSE in subbands are derived for
both correlated and white Gaussian processes. The num-
ber of cross-band �lters used for the echo canceller in each
frequency-band is generally lower than the number of �l-
ters needed for the STFT representation of the unknown
echo path. We therefore employ the performance analysis
of the de�cient length LMS algorithm which was recently
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presented in [3]. Experimental results are provided, which
support our theoretical analysis and demonstrate the tran-
sient and steady-state MSE performances of the direct ad-
aptation algorithm.

2. PROBLEM FORMULATION

An acoustic echo canceller operating in the STFT domain
is depicted in Fig. 1. The microphone signal y(n) can
be written as y(n) = d(n) + �(n), where d(n) is the echo
signal and �(n) is the near-end signal. Applying the STFT
to y(n), we have in the time-frequency domain

yp;k = dp;k + �p;k , (1)

where p is the frame index (p = 0; 1; : : :) and k is the
frequency-band index (k = 0; 1; : : : ; N � 1). dp;k can be
written as [2]

dp;k =
N�1X
k0=0

Nh�1X
p0=0

xp�p0;k0hp0;k;k0 , (2)

where hp0;k;k0 depends on both the echo path impulse re-
sponse h(n) and the STFT analysis/synthesis parameters,
andNh is its length (with respect to index p0). That is, for
a given frequency-band index k, the signal dp;k is obtained
by convolving the signal xp;k0 in each frequency-band k0
with the corresponding �lter hp;k;k0 and then summing
over all the outputs. We refer to hp;k;k0 for k = k0 as a
band-to-band �lter and for k 6= k0 as a cross-band �lter.
It has been shown [2] that in order to capture most of the
energy of the STFT representation of h(n), relatively few
cross-band �lters need to be considered. Our objective is
to adapt those cross-band �lters in the STFT domain in
order to produce an echo estimate.

3. DIRECT ADAPTATION ALGORITHM

In this section, we present a direct adaptation algorithm
(�rst introduced in [1]), in which each of the cross-band
�lters used for the echo canceller is estimated by using
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Figure 1: Acoustic echo cancellation system in the STFT do-
main. The echo path impulse response h(n) is modeled by the
block Ĥ in the STFT domain.

an adaptive �lter. Let ĥp0;k;k0(p) be an adaptive �lter of
length Nh that attempts to estimate the cross-band �lter
hp0;k;k0 at frame index p, and let d̂p;k be the resulting es-
timate of dp;k using only 2K adaptive �lters around the
frequency-band k, where 2K + 1 � N , i.e.,

d̂p;k =

k+KX
k0=k�K

Nh�1X
p0=0

xp�p0;k0 ĥp0;k;k0(p) , (3)

when we recall that due to the periodicity
of the frequency-bands the summation index
k0 satis�es k0 = k0modN . Let hk;k0 =�
h0;k;k0 � � � hNh�1;k;k0

�T denote a cross-band
�lter from frequency-band k0 to frequency-band k and
let �k(p) =

�
xp;k xp�1;k � � � xp�Nh+1;k

�T . Then,
using (1) and (2), yp;k can be rewritten as

yp;k = ~x
T
k (p)~hk + �p;k , (4)

where ~xk(p) =
�
�T0 (p) � � � �TN�1(p)

�T and ~hk =�
hTk;0 � � � hTk;N�1

�T are the column-stack concatena-
tions of f�k0(p)g

N�1
k0=0 and fhk;k0g

N�1
k0=0, respectively. Let

ĥk;k0(p) =
�
ĥ0;k;k0(p) � � � ĥNh�1;k;k0(p)

�T
denote

an adaptive cross-band �lter from frequency-band k to
frequency-band k0. Then the estimated echo signal in (3)
can be rewritten as

d̂p;k = x
T
k (p)ĥk(p) , (5)

where xk(p) and ĥk(p) are the column-stack concaten-

ations of f�k0(p)g
k+K
k0=k�K and

n
ĥk;k0(p)

ok+K
k0=k�K

, re-
spectively. The coef�cients of the 2K + 1 adaptive cross-
band �lters are then updated using the LMS algorithm:

ĥk(p+ 1) = ĥk(p) + �ep;kx
�
k(p) (6)

where

ep;k = yp;k � d̂p;k (7)

is the error signal (see Fig. 1), � is the step-size
and � denotes complex conjugation. Observe that
we attempt to estimate the unknown system in the
STFT domain represented by a vector of length NNh
(~hk), by using a de�cient length vector ĥk(p) with
only (2K + 1)Nh coef�cients. Let us write ~hk and
~xk(p), respectively, as ~hk =

�
hTk

�hTk
�T , ~xk(p) =�

xTk (p) �xTk (p)
�T where hk, �hk and �xk(p) are

the column-stack concatenations of fhk;k0gk+Kk0=k�K ,
fhk;k0gk02L and f�k0(p)gk02L, respectively, where L =
fk0j k0 2 [0; N � 1] and k0 =2 [k �K; k +K]g. Then,
by substituting (4) and (5) into (7), the error signal can
be written as

ep;k = �x
T
k (p)�hk � xTk (p)gk(p) + �p;k , (8)

where gk(p) = ĥk(p) � hk represents the misalignment
vector. Substituting (8) into (6), the LMS update equation
can be expressed as

gk(p+ 1) =
�
I��x�k(p)xTk (p)

�
gk(p)

+�
�
�xTk (p)�hk

�
x�k(p) + ��p;kx

�
k(p) .

(9)

4. MSE PERFORMANCE ANALYSIS

We proceed with the mean-square analysis of the adapt-
ive algorithm assuming that xp;k is a zero-mean correl-
ated Gaussian complex signal with variance �2x, and that
�p;k is a zero-mean white complex signal with variance
�2� that is uncorrelated with xp;k. We also use the com-
mon independence assumption that xk(p) is independent
of ĥk(p) [4].

4.1. Transient Performance

The MSE is de�ned by

�k(p) = E
n
jep;kj2

o
, (10)

LetRk = E
�
xk(p)x

H
k (p)

	
and �Rk = E

�
�xk(p)�x

H
k (p)

	
be the autocorrelation matrices of xk(p) and �xk(p); re-
spectively. Then, by substituting (8) into (10), the MSE
can be expressed as

�k(p) = �2� + �h
T
k
�Rk
�h�k � 2Re

�
fHk E fgk(p)g

	
+E

�
gTk (p)Rkg

�
k(p)

	
(11)
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where fk = �hTkE f�xk(p)x�k(p)g, the operator tr(�) de-
notes the trace of a matrix and H denotes conjugation
transpose. Now, since Rk is Hermitian matrix it can
be decomposed into Rk = Qk�kQ

H
k , where �k =

diag(�1k; : : : ; �
(2K+1)Nh

k ) is the diagonal eigenvalue mat-
rix, �ik is the i-th eigenvalue of Rk, and Qk is a unitary
matrix whose columns are the eigenvectors ofRk. By de-
composingRk in (11), the MSE can be rewritten as

�k(p) = �2� + �h
T
k
�Rk
�h�k � 2Re

�
fHk E fgk(p)g

	
+�Tk zk(p) , (12)

where �k = diag(�k) is a vector whose compon-
ents are the diagonal elements of �k and zk(p) =
diag

�
QH
k E

�
g�k(p)g

T
k (p)

	
Qk

�
. To proceed with the ana-

lysis, we need to �nd recursive formulas for E fgk(p)g
and zk(p). By taking expectation in (9) and using the in-
dependence assumption we get

E fgk(p+ 1)g = [I � �R�
k]E fgk(p)g+ �fk . (13)

Furthermore, substituting (9) into the expression for zk(p)
and using the fourth-order moment factoring theorem for
zero-mean complex Gaussian samples, we obtain the fol-
lowing recursive formula for zk(p):

zk(p+ 1) = Akzk(p) + bk(p) + �
2ck + �

2�2��k (14)

where Ak = I�2��k + �2�2k + �2�k�
T
k , bk(p) =

2�Re
�
FkQ

H
k E fg�k(p)g

	
� 2�2Refuk(p)g and ck =

diag
�
QH
k CkQk

�
, where Fk is a diagonal matrix whose

diagonal contains the elements of the vector f̂k = QT
k fk

and uk(p) = diag
�
QH
k Uk(p)Qk

�
. The matrices Uk(p)

and Ck are given by

Uk(p) = E
��
�xTk (p)�hk

�
xk(p)x

H
k (p)z

�
k(p)x

H
k (p)

	
Ck = E

n���xTk (p)�hk��2 xk(p)xHk (p)o , (15)

where by de�ning ~Rk = E
�
�xk(p)x

H
k (p)

	
,

the (n;m)-th term of Uk(p) and Ck can
be written, respectively, as (Uk(p))n;m =

E
�
gHk (p)

	 �
(Rk)n;m

~RT
k + (Rk)

T
n;:

�
~Rk

�T
:;m

�
�h and

(Ck)n;m = �hT
�
(Rk)n;m

�Rk +
�
~Rk

�
:;m

�
~R�
k

�T
:;n

�
�h�,

where (�)n;: and (�):;n denote the n-th row and the n-th
column of a matrix, respectively. Equations (12)-(15)
represent the MSE behavior in the k-th frequency-band
using a direct cross-band �lters' adaptation.

4.2. Steady-State Performance

To examine the steady-state solution of (12), we �rst need
to �nd the steady-state solutions of (13) and (14). It can
be veri�ed that equation (13) is convergent if � satis�es

0 < � <
2

tr(R�
k)
=

2

tr(Rk)
(16)

and its steady-state solution is

E fgk(1)g = (R�
k)
�1
fk , (17)

that is, E
n
ĥk(1)

o
= hk + (R

�
k)
�1
fk. It indicates that

each of the adaptive cross-band �lters does not converge
in the mean to the true unknown cross-band �lter and it
suffers from a bias quanti�ed by (R�

k)
�1
fk. This bias,

however, reduces to zero whenever 2K + 1 = N (i.e.,
all the cross-band �lters are estimated) or xp;k is white,
which in both cases fk = 0. Substituting (17) for gk(p)
in (11) we �nd the minimum MSE (MMSE) obtainable in
the k-th frequency-band:

�mink = �2� + �h
T
k
�Rk
�h�k � f̂Tk ��1k f̂�k (18)

We proceed with deriving the steady-state solution of (14).
Observe that bk(p) in (14) is bounded whenever � satis-
�es (16). As a result, equation (14) is convergent if and
only if the eigenvalues ofAk are all within the unit circle.
Following the theoretical analysis in [5] we �nd that this
condition results in

0 < � <
1

tr(Rk)
, �max. (19)

It is clear that condition (16) is dominated by (19), there-
fore the mean-square convergence of this algorithm is
guaranteed if � satis�es (19). The steady-state solution
of (14) is given by

zk(1) = [I�Ak]
�1 �

bk(1) + �2ck + �2�2��k
�
,
(20)

where bk(1) can be easily computed using (15) and (17).
Observe that by substituting (17) into (12), the steady-
state MSE can be written as

�k(1) = �mink + �exk (1) , (21)
where �exk (1) = �Tk zk(1) � f̂Tk �

�1
k f̂�k is the steady-

state excess MSE and �mink is de�ned in (18). Using the
matrix inverse lemma to solve (20), we obtain after some
manipulations

�exk (1) =

P(2K+1)Nh

i=1
�qik

2���ik
+
P(2K+1)Nh

i=1
��ik�

min
k

2���ik

1�
P(2K+1)Nh

i=1
��ik
2���ik

,

(22)

IWAENC 2006 – PARIS – SEPTEMBER 12-14, 2006 3



where qik is the i-th element of the vector qk =

ck � 2Re fuk(1)g +
h
2f̂Tk �

�1
k f̂�k � �hTk �Rk

�h�k

i
�k+

diag(f̂k f̂Hk ). Equations (21), (18) and (22) provide an
explicit expression for the steady-state MSE achieved in
each frequency-band using a direct adaptation for the
cross-band �lters. Note that for small step-size values,
(22) can be written as

�exk (1) �=
�

2

(2K+1)NhX
i=1

qik +
�

2

(2K+1)NhX
i=1

�ik�
min
k . (23)

That is, the excess MSE is mainly in�uenced by both the
�uctuations of the adaptive �lters coef�cients around the
optimal values and the bias in those coef�cients, caused
by the de�cient number of adaptive cross-band �lters used
in the algorithm. Note that when the input signal xp;k is
white we have qk = 0, leading to simpli�ed expressions
for the steady-state MSE

�exk (1)white =
��2x(2K + 1)Nh

2� ��2x [(2K + 1)Nh + 1]
�minkwhite

,

(24)
where �minkwhite

= �2� + �2x
�hk2, and �k(1)white =

�minkwhite
+ �exk (1)white.

5. SIMULATIONS RESULTS AND DISCUSSION

Simulations results verify the theoretical results derived
in this paper. A sampling rate of 16 kHz was used. An
impulse response h(n) was measured in an of�ce which
exhibits a reverberation time (the time for the reverberant
sound energy to drop by 60 dB from its original value)
of about 300 ms. The STFT was applied to the desired
signals by using a Hamming synthesis window of length
N = 256 (16 ms) with 50% overlap (L = 128), and a
corresponding minimum energy analysis window which
satis�es the completeness condition [6]. The STFT of the
far-end signal xp;k and the STFT of the near-end signal
�p;k are both zero-mean white Gaussian processes with
variances �2x = 1 and �2� = 0:001, respectively. We chose
K = 2 (i.e., 4 adaptive cross-band �lters), and used a
large step-size � = 0:006 (� 0:5�max) and a small one
� = 0:0012 (� 0:1�max). Fig. 2 shows the MSE curves
for the frequency-band k = 1 that obtained from simula-
tions (by averaging over 1000 independent runs) and from
the theoretical expression in (12) (similar results are ob-
tained for the other frequency-bands). It can be seen that
the theoretical analysis accurately describes both the tran-
sient and steady-state performance of the direct adaptation
algorithm. Generally, as the step-size increases, the theor-
etical MSE curves are less accurate in predicting the al-
gorithm performance since the independence assumption

Figure 2: Comparison of simulation (light) and theoretical
(dark) MSE curves for white Gaussian signals, obtained using
a large step-size � = 0:006 and a small step-size � = 0:0012.

used in this paper is valid only for small step-size values.
As expected from (24), as we decrease the step-size, lower
steady-state MSE is achieved; however, the algorithm then
suffers from slow convergence rate. Note that the ana-
lysis presented here is performed under the assumption
of a uniform step-size for each adaptive cross-band �lter.
Performance may be further improved by incorporating
different step-size values for each �lter (e.g., matching the
step-size to the signal energy at the input of each adaptive
cross-band �lter).
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